Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Application of an Ensemble Kalman filter to a 1-D coupled hydrodynamic-ecosystem model of the Ligurian Sea
Lenartz, F.; Raick, C.; Soetaert, K.; Grégoire, M. (2007). Application of an Ensemble Kalman filter to a 1-D coupled hydrodynamic-ecosystem model of the Ligurian Sea. J. Mar. Syst. 68(3-4): 327-348. dx.doi.org/10.1016/j.jmarsys.2006.12.001
In: Journal of Marine Systems. Elsevier: Tokyo; Oxford; New York; Amsterdam. ISSN 0924-7963; e-ISSN 1879-1573, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    ecosystems; hydrodynamics; Kalman filters; Ligurian Sea

Authors  Top 
  • Lenartz, F., more
  • Raick, C., more
  • Soetaert, K.
  • Grégoire, M., more

Abstract
    The Ensemble Kalman filter (EnKF) has been applied to a 1-D complex ecosystem model coupled with a hydrodynamic model of the Ligurian Sea. In order to improve the performance of the EnKF, an ensemble subsampling strategy has been used to better represent the covariance matrices and a pre-analysis step for correcting the non-normality of the members distribution has been implemented. Twin experiments have been realized to assess the performance of the developed tool and a real data assimilation experiment has been conducted to hindcast the ecosystem at the Dyfamed site during the year 2000. Finally the performance of the EnKF has been compared with a Singular Evolutive Extended Kalman (SEEK) filter with a fixed basis. We conclude that, on one hand, there is a benefit in using the subsampling strategy and the lognormal transformation with the EnKF, and on the other hand, this filter presents better performance than the fixed basis version of the SEEK filter. However, it also incurs a large computational cost.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors