Formula to predict transmission for pi-type floating breakwaters
In: Journal of Waterway, Port, Coastal, and Ocean Engineering. American Society of Civil Engineers (ASCE): New York, N.Y.. ISSN 0733-950X; e-ISSN 1943-5460, more
| |
Keyword |
|
Author keywords |
Floating breakwater, pi-type, Wave flume experiments, Moorings, Natural oscillations, Wave transmission |
Project | Top | Authors |
- Innovative coastal technologies for safer European coasts in a changing climate, more
|
Authors | | Top |
- Ruol, P.
- Martinelli, L.
- Pezzutto, P.
|
|
|
Abstract |
The aim of this paper is to define a simple and useful formula to predict wave transmission for a common type of floating breakwater (FB), supplied with two lateral vertical plates protruding downward, named p-type FB. Eight different models, with mass varying from 16 to 76 kg, anchored with chains, have been tested in the wave flume of the Maritime Laboratory of Padova University, under irregular wave conditions. Water elevation in front and behind the structure has been measured with two arrays of four wave gauges. Our starting point for the prediction of wave transmission was the classical relationship established by Macagno in 1954. His relationship was derived for a box-type fixed breakwater assuming irrotational flow. Consequently, he significantly underestimated transmission for short waves and large drafts. This paper proposes an empirical modification of his relationship to properly fit the experimental results and a standardized plotting system of the transmission coefficient, based on a simple nondimensional variable. This variable is the ratio between the peak period of the incident wave and an approximation of the natural period of the heave oscillation. A fairly good accuracy of the prediction is found analyzing the data in the literature relative to variously moored p-type FBs, tested in small-scale wave tanks under regular and irregular wave conditions. |
|