Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

From artificial structures to self-sustaining oyster reefs
Walles, B.; Troost, K.; Van den Ende, D.; Nieuwhof, S.; Smaal, A.C.; Ysebaert, T. (2016). From artificial structures to self-sustaining oyster reefs. J. Sea Res. 108: 1-9
In: Journal of Sea Research. Elsevier/Netherlands Institute for Sea Research: Amsterdam; Den Burg. ISSN 1385-1101; e-ISSN 1873-1414, more
Peer reviewed article  

Available in  Authors 

Keyword
    Magallana gigas (Thunberg, 1793) [WoRMS]
Author keywords
    Artificial reefs; Crassostrea gigas; Growth; Oyster reefs; Recruitment; Survival; Tidal emersion

Authors  Top 
  • Nieuwhof, S., more
  • Smaal, A.C.
  • Ysebaert, T., more

Abstract
    Coastal ecosystems are increasingly recognized as essential elements within coastal defence schemes and coastal adaptation. The capacity of coastal ecosystems, like marshes and oyster reefs, to maintain their own habitat and grow with sea-level rise via biophysical feedbacks is seen as an important advantage of such systems compared to man-made hard engineering structures.Providing a suitable substrate for oysters to settle on offers a kick-start for establishment at places where they were lost or are desirable for coastal protection. Accumulation of shell material, through recruitment and growth, is essential to the maintenance of oyster reefs as it provides substrate for new generations (positive feedback loop), forming a self-sustainable structure. Insight in establishment, survival and growth thresholds and knowledge about the population dynamics are necessary to successfully implement oyster reefs in coastal defence schemes.The aim of this paper is to investigate whether artificial Pacific oyster reefs develop into self-sustaining oyster reefs that contribute to coastal protection. Reef development was investigated by studying recruitment, survival and growth rates of oysters on artificial oyster reefs in comparison with nearby natural Pacific oyster reefs. The artificial reef structure successfully offered substrate for settlement of oysters and therefore stimulated reef formation. Reef development, however, was hampered by local sedimentation and increasing tidal emersion. Tidal emersion is an important factor that can be used to predict where artificial oyster reefs have the potential to develop into self-sustaining reefs that could contribute to coastal protection, but it is also a limiting factor in using oyster reefs for coastal protection

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors