Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, Gadus morhua
Dahlke, F.T.; Leo, E.; Mark, F.C.; Pörtner, H.O.; Bickmeyer, U.; Frickenhaus, S.; Storch, D. (2017). Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, Gadus morhua. Glob. Chang. Biol. 23(4): 1499-1510. https://dx.doi.org/10.1111/gcb.13527
In: Global Change Biology. Blackwell Publishers: Oxford. ISSN 1354-1013; e-ISSN 1365-2486, more
Peer reviewed article  

Available in  Authors 

Keywords
    Climate Change
    Environmental Managers & Monitoring
    Fisheries > Fisheries General
    Policy Makers / Decision Makers
    Scientific Community
    Scientific Publication
    Marine/Coastal
Author keywords
    aerobic metabolism; Atlantic cod; embryonic development; hatchingsuccess; mitochondrial respiration; ocean acidification; ocean warming;thermal tolerance window

Project Top | Authors 
  • Association of European marine biological laboratories, more

Authors  Top 
  • Dahlke, F.T.
  • Leo, E.
  • Mark, F.C.
  • Pörtner, H.O.
  • Bickmeyer, U.
  • Frickenhaus, S.
  • Storch, D.

Abstract
    Thermal tolerance windows serve as a powerful tool for estimating the vulnerability of marine species and their life stages to increasing temperature means and extremes. However, it remains uncertain to which extent additional drivers, such as ocean acidification, modify organismal responses to temperature. This study investigated the effects of CO2-driven ocean acidification on embryonic thermal sensitivity and performance in Atlantic cod, Gadus morhua, from the Kattegat. Fertilized eggs were exposed to factorial combinations of two PCO2 conditions (400 μatm vs. 1100 μatm) and five temperature treatments (0, 3, 6, 9 and 12 °C), which allow identifying both lower and upper thermal tolerance thresholds. We quantified hatching success, oxygen consumption (MO2) and mitochondrial functioning of embryos as well as larval morphometrics at hatch and the abundance of acid–base-relevant ionocytes on the yolk sac epithelium of newly hatched larvae. Hatching success was high under ambient spawning conditions (3–6 °C), but decreased towards both cold and warm temperature extremes. Elevated PCO2 caused a significant decrease in hatching success, particularly at cold (3 and 0 °C) and warm (12 °C) temperatures. Warming imposed limitations to MO2 and mitochondrial capacities. Elevated PCO2 stimulated MO2 at cold and intermediate temperatures, but exacerbated warming-induced constraints on MO2, indicating a synergistic interaction with temperature. Mitochondrial functioning was not affected by PCO2. Increased MO2 in response to elevated PCO2 was paralleled by reduced larval size at hatch. Finally, ionocyte abundance decreased with increasing temperature, but did not differ between PCO2 treatments. Our results demonstrate increased thermal sensitivity of cod embryos under future PCO2 conditions and suggest that acclimation to elevated PCO2 requires reallocation of limited resources at the expense of embryonic growth. We conclude that ocean acidification constrains the thermal performance window of embryos, which has important implication for the susceptibility of cod to projected climate change.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors