Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Experimental study on the wind-turbine wake meandering inside a scale model wind farm placed in an atmospheric-boundary-layer wind tunnel
Coudou, N.; Buckingham, S.; van Beeck, J. (2017). Experimental study on the wind-turbine wake meandering inside a scale model wind farm placed in an atmospheric-boundary-layer wind tunnel. Journal of Physics: Conference Series 854: 012008. https://dx.doi.org/10.1088/1742-6596/854/1/012008
In: Journal of Physics: Conference Series. IOP Publishing: Bristol. ISSN 1742-6588; e-ISSN 1742-6596, more
Peer reviewed article  

Available in  Authors 
Document type: Conference paper

Keyword
    Marine/Coastal

Authors  Top 

Abstract
    Increasing use of wind energy over the years results in more and larger clustered wind farms. It is therefore fundamental to have an in-depth knowledge of wind-turbine wakes, and especially a better understanding of the well-known but less understood wake-meandering phenomenon which causes the wake to move as a whole in both horizontal and vertical directions as it is convected downstream. This oscillatory motion of the wake is crucial for loading on downstream turbines because it increases fatigue loads and in particular yaw loads. In order to address this phenomenon, experimental investigations were carried out in an atmospheric boundary-layer wind tunnel using a 3 x 3 scaled wind farm composed of three-bladed rotating wind-turbine models subject to a neutral atmospheric boundary layer (ABL) corresponding to a slightly rough terrain, i.e. to offshore conditions. Particle Image Velocimetry (PIV) measurements were performed in a horizontal plane, at hub height, in the wake of the three wind turbines in the wind-farm centreline. From the PIV velocity fields obtained, the wake-centrelines were determined and a spectral analysis was performed to obtain the characteristics of the wake-meandering phenomenon. In addition, Hot-Wire Anemometry (HWA) measurements were performed in the wakes of the same wind turbines to validate the PIV results. The spectral analysis performed with the spatial and temporal signals obtained from PIV and HWA measurements respectively, led to Strouhal numbers St = f D/U-hub similar or equal to 0.20 - 0.22.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors