Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Validated extrapolation of measured damage within an offshore wind farm using instrumented fleet leaders
Noppe, N.; Hubler, C.; Devriendt, C.; Weijtjens, W. (2020). Validated extrapolation of measured damage within an offshore wind farm using instrumented fleet leaders. Journal of Physics: Conference Series 1618(2): 022005. https://dx.doi.org/10.1088/1742-6596/1618/2/022005
In: Journal of Physics: Conference Series. IOP Publishing: Bristol. ISSN 1742-6588; e-ISSN 1742-6596, more
Peer reviewed article  

Available in  Authors 
Document type: Conference paper

Keyword
    Marine/Coastal

Authors  Top 
  • Noppe, N., more
  • Hubler, C.
  • Devriendt, C., more
  • Weijtjens, W., more

Abstract
    As the older wind farms are slowly reaching their design lifetime, topics like fatigue and lifetime assessment gain importance. To decide on a possible lifetime extension of the turbine and its foundation, an accurate fatigue assessment for every wind turbine in the farm is needed. As the installation of specific sensors needed for a fatigue assessment is too time consuming and costly, the "Fleet Leader Concept" is applied and validated in this paper. Here, a few turbines are instrumented and a fatigue assessment based on rainflow counting and Miner's rule can be performed. For a farm-wide fatigue assessment, the obtained damage is extrapolated towards the other turbines. Sample based bootstrapping is performed to introduce an uncertainty on the results. A successful extrapolation was obtained for in-field measurements at an older offshore wind farm. In general, relative errors of less than 5% on damage were found.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors