Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Seasonal patterns of vertical flux in the northwestern Barents Sea under Atlantic Water influence and sea-ice decline
Bodur, Y.V.; Renaud, P.E.; Goraguer, L.; Amargant-Arumí, M.; Assmy, P.; Dabrowska, A.M.; Marquardt, M.; Renner, A.H.H.; Tatarek, A.; Reigstad, M. (2023). Seasonal patterns of vertical flux in the northwestern Barents Sea under Atlantic Water influence and sea-ice decline. Prog. Oceanogr. 219: 103132. https://dx.doi.org/10.1016/j.pocean.2023.103132
In: Progress in Oceanography. Pergamon: Oxford,New York,. ISSN 0079-6611; e-ISSN 1873-4472, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Carbon export; Polar Front; Marginal ice zone (MIZ); Seasonal ice zone (SIZ); Seasonality; Attenuation

Authors  Top 
  • Bodur, Y.V., more
  • Renaud, P.E., more
  • Goraguer, L.
  • Amargant-Arumí, M.
  • Assmy, P.
  • Dabrowska, A.M.
  • Marquardt, M.
  • Renner, A.H.H.
  • Tatarek, A.
  • Reigstad, M.

Abstract
    The northern Barents Sea is a productive Arctic inflow shelf with a seasonal ice cover and as such, a location with an efficient downward export of particulate organic matter through the biological carbon pump. The region is under strong influence of Atlantification and sea-ice decline, resulting in a longer open water and summer period. In order to understand how these processes influence the biological carbon pump, it is important to identify the seasonal and spatial dynamics of downward vertical flux of particulate organic matter. In 2019 and 2021, short-term sediment traps were deployed between 30 and 200 m depth along a latitudinal transect in the northwestern Barents Sea during March, May, August and December. Vertical flux of particulate organic carbon, δ13C and δ15N values, Chl-a, protists and fecal pellets were assessed. We identified a clear seasonal pattern, with highest vertical flux in May and August (178 ± 202 and 159 ± 79 mg C m−2 d1, respectively). Fluxes in December and March were < 45 mg C m−2 d1. May was characterized by diatom- and Chl a-rich fluxes and high spatial variability, while fluxes in August had a higher contribution of fecal pellets and small flagellates, and were spatially more homogenous. Standing stocks of suspended particulate organic matter were highest in August, suggesting a more efficient retention system in late summer. The strong latitudinal sea-ice gradient and the influence of Atlantic Water probably led to the high spatial variability of vertical flux in spring, due to their influence on primary productivity. We conclude that the efficiency of the biological carbon pump in a prolonged open-water period depends on the reworking of small, slow sinking material into efficiently sinking fecal pellets or aggregates, and the occurrence of mixing.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors