Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
one publication added to basket [132295] |
Ecology of bottom ice algae: I. Environmental controls and variability
In: Journal of Marine Systems. Elsevier: Tokyo; Oxford; New York; Amsterdam. ISSN 0924-7963; e-ISSN 1879-1573
Ook verschenen in:Nihoul, J.C.J.; Djenidi, S. (1991). Ice covered seas and ice edges: Physical, chemical and biological processes and interactions - Proceedings of the 22th International Liège Colloquium on Ocean Hydrodynamics. Journal of Marine Systems, 2. Elsevier Science Publishers: Amsterdam. 520 pp., meer
| |
Auteurs | | Top |
- Cota, G.F.
- Legendre, L.
- Gosselin, M.
- Ingram, R.G.
|
|
|
Abstract |
Over large ocean areas of the Arctic, Subarctic and Antarctic, which are covered by landfast sea ice during springtime, high concentrations of microalgae have been observed in the interstices of the lower margin of sea ice floes and, in some cases, in a thin layer of surface water immediately under the ice cover or associated with semi-consolidated frazil ice. Ice algal blooms enhance and extend biological production in polar waters by at least 1-3 months. Biomass accumulation of sea ice algal populations ultimately depends upon the duration of the growth season, which is largely a function of climatic and environmental variability. Growth seasons are shorter at lower latitudes because of abbreviated photoperiods, warmer air temperatures and earlier ablation and break up. Environmental factors, which regulate ice algal distributions and dynamics, display characteristic scales of time/space variance. Sea ice habitats are much more stable than planktonic environments, because ice is not subject to large vertical displacements in the irradiance field. Temperature and salinity are relatively constant over most of the growth period. However, nutrients must be supplied to relatively thin, dense layers of cells and fluxes are variable depending on ice growth and hydrodynamics. Although the occurrence of prolonged blooms of ice algae at the ice-water interface is a widespread phenomenon, there are important differences between the growth habits and environments of several well-studied sites. Recent observations from seasonal studies of these sites are compared and contrasted with an emphasis on how the dominant scales of environmental variability influence ice algal populations. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.