Despite their moderately sized surface area, continental marginal seas play a significant role in the biogeochemical cycles of carbon, as they receive huge amounts of upwelled and riverine inputs of carbon and nutrients, sustaining a disproportionate large biological activity compared to their relative surface area. A synthesis of worldwide measurements of the partial pressure Of CO2 (pCO2) indicates that most open shelves in the temperate and high-latitude regions are under-saturated with respect to atmospheric CO2 during all seasons, although the low-latitude shelves seem to be over-saturated. Most inner estuaries and near-shore coastal areas on the other hand are over-saturated with respect to atmospheric CO2. The scaling of air-sea CO2 fluxes based on pCO2 measurements and carbon mass-balance calculations indicate that the continental shelves absorb atmospheric CO2 ranging between 0.33 and 0.36 Pg C yr-1 that corresponds to an additional sink of 27% to similar to 30% of the CO2 uptake by the open oceans based on the most recent pCO2 climatology [Takahashi, T., Sutherland, S.C., Wanninkhof, R., Sweeney, C., Feely, R.A., Chipman, D., Hales, B., Friederich, G., Chavez, F., Watson, A., Bakker, D., Schuster, U., Metzl, N., Inoue, H.Y., Ishii, M., Midorikawa, T., Sabine, C., Hoppema, M., Olafsson, J., Amarson, T., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., De Baar, H., Nojiri, Y., Wong. C.S., Delille, B., Bates, N., 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research 11, this issue [doi: 10.1016/j.dsr2.2008.12.009].]. Inner estuaries, salt marshes and mangroves emit up to 0.50 Pg C yr-1, although these estimates are prone to large uncertainty due to poorly constrained ecosystem surface area estimates. Nevertheless, the view of continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2 allows reconciling long-lived opposing views on carbon cycling in the coastal ocean. |