Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
one publication added to basket [227700] |
Evolution of weakly nonlinear random directional waves: laboratory experiments and numerical simulations
Toffoli, A.; Gramstad, O.; Trulsen, K.; Monbaliu, J.; Bitner-Gregersen, E.; Onorato, M. (2010). Evolution of weakly nonlinear random directional waves: laboratory experiments and numerical simulations. J. Fluid Mech. 664: 313-336. http://dx.doi.org/10.1017/S002211201000385X
In: Journal of Fluid Mechanics. Cambridge University Press: London. ISSN 0022-1120; e-ISSN 1469-7645
| |
Auteurs | | Top |
- Toffoli, A.
- Gramstad, O.
- Trulsen, K.
|
- Monbaliu, J.
- Bitner-Gregersen, E.
- Onorato, M.
|
|
Abstract |
Nonlinear modulational instability of wavepackets is one of the mechanisms responsible for the formation of large-amplitude water waves. Here, mechanically generated waves in a three-dimensional basin and numerical simulations of nonlinear waves have been compared in order to assess the ability of numerical models to describe the evolution of weakly nonlinear waves and predict the probability of occurrence of extreme waves within a variety of random directional wave fields. Numerical simulations have been performed following two different approaches: numerical integration of a modified nonlinear Schrödinger equation and numerical integration of the potential Euler equations based on a higher-order spectral method. Whereas the first makes a narrow-banded approximation (both in frequency and direction), the latter is free from bandwidth constraints. Both models assume weakly nonlinear waves. On the whole, it has been found that the statistical properties of numerically simulated wave fields are in good quantitative agreement with laboratory observations. Moreover, this study shows that the modified nonlinear Schrödinger equation can also provide consistent results outside its narrow-banded domain of validity. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.