Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
one publication added to basket [295558] |
A comparison study of a generic coupling methodology for modeling wake effects of Wave Energy Converter arrays
Verbrugghe, T.; Stratigaki, V.; Troch, P.; Rabussier, R.; Kortenhaus, A. (2017). A comparison study of a generic coupling methodology for modeling wake effects of Wave Energy Converter arrays. Energies (Basel) 10(11): 1697. https://dx.doi.org/10.3390/en10111697
In: Energies (Basel). Molecular Diversity Preservation International (MDPI): Basel. ISSN 1996-1073; e-ISSN 1996-1073
| |
Trefwoord |
|
Author keywords |
numerical modeling; coupling; wave energy; wave propagation;wave-structure interaction; wave basin experiments; WECwakes project |
Auteurs | | Top |
- Verbrugghe, T.
- Stratigaki, V.
- Troch, P.
|
- Rabussier, R.
- Kortenhaus, A.
|
|
Abstract |
Wave Energy Converters (WECs) need to be deployed in large numbers in an array layout in order to have a significant power production. Each WEC has an impact on the incoming wave field, by diffracting, reflecting and radiating waves. Simulating the wave transformations within and around a WEC array is complex; it is difficult, or in some cases impossible, to simulate both these near-field and far-field wake effects using a single numerical model, in a time-and cost-efficient way in terms of computational time and effort. Within this research, a generic coupling methodology is developed to model both near-field and far-field wake effects caused by floating (e.g., WECs, platforms) or fixed offshore structures. The methodology is based on the coupling of a wave-structure interaction solver (Nemoh) and a wave propagation model. In this paper, this methodology is applied to two wave propagation models (OceanWave3D and MILDwave), which are compared to each other in a wide spectrum of tests. Additionally, the Nemoh-OceanWave3D model is validated by comparing it to experimental wave basin data. The methodology proves to be a reliable instrument to model wake effects of WEC arrays; results demonstrate a high degree of agreement between the numerical simulations with relative errors lower than 5% and to a lesser extent for the experimental data, where errors range from 4% to 17%. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.