Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
one publication added to basket [75943] |
Influence of changes in salinity and light intensity on growth of phytoplankton communities from the Schelde river and estuary (Belgium/The Netherlands)
Lionard, M.; Muylaert, K.; Van Gansbeke, D.; Vyverman, W. (2005). Influence of changes in salinity and light intensity on growth of phytoplankton communities from the Schelde river and estuary (Belgium/The Netherlands). Hydrobiologia 540(1-3): 105-115. https://dx.doi.org/10.1007/s10750-004-7123-x
In: Hydrobiologia. Springer: The Hague. ISSN 0018-8158; e-ISSN 1573-5117
Ook verschenen in:Meire, P.; Van Damme, S. (Ed.) (2005). Ecological structures and functions in the Scheldt Estuary: from past to future. Hydrobiologia, 540(1-3). Springer: Dordrecht. 1-278 pp., meer
| |
Trefwoorden |
Aquatic communities > Plankton > Phytoplankton Chemical compounds > Organic compounds > Carbohydrates > Glycosides > Pigments Irradiance Properties > Chemical properties > Salinity Water bodies > Coastal waters > Coastal landforms > Coastal inlets > Estuaries Water bodies > Inland waters > Rivers België, Schelde R. [Marine Regions]; België, Zeeschelde [Marine Regions] Marien/Kust; Zoet water |
Author keywords |
phytoplankton; HPLC; pigments; estuary; river; irradiance; salinity |
Auteurs | | Top |
- Lionard, M.
- Muylaert, K.
- Van Gansbeke, D.
- Vyverman, W.
|
|
|
Abstract |
In the Schelde continuum, a succession in the phytoplankton community is observed along the transition from the river to the freshwater tidal reaches of the estuary and from the freshwater to brackish reaches of the estuary. The goal of this study was to experimentally evaluate the contribution of changes in salinity and light climate to this succession. In summer 2000 and in spring 2001, phytoplankton communities from the river, the freshwater tidal reaches and the brackish reaches of the estuary were incubated under high or low light intensities and exposed to a change in salinity. HPLC analysis was used to evaluate the response of different algal groups to changes in light intensity and salinity. When incubated at a light intensity corresponding to the mean underwater light intensity of the freshwater tidal reaches, growth of phytoplankton from the river as well as from freshwater tidal reaches was significantly lower than when incubated at a light intensity corresponding to the mean underwater light intensity of the river. The phytoplankton community from the freshwater tidal reaches did not appear to be better adapted to low light intensities than the phytoplankton community from the river. Although diatoms were expected to be less sensitive to a reduction in light intensity than green algae, the opposite response was observed. Freshwater and brackish water phytoplankton were negatively affected by respectively an increase or decrease in salinity. However, the effect of salinity was not strong enough to explain the disappearance of freshwater and brackish water phytoplankton between a salinity of 0.5 and 10 psu, suggesting that other factors also play a role. In the freshwater phytoplankton communities from the river and the freshwater tidal reaches, green algae and diatoms responded in a similar way to an increase in salinity. In the brackish water phytoplankton community, fucoxanthin displayed a different response to salinity than lutein and chlorophyll a. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.