Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
The influence of oceanographic processes on pelagic-benthic coupling in polar regions: A benthic perspective
In: Journal of Marine Systems. Elsevier: Tokyo; Oxford; New York; Amsterdam. ISSN 0924-7963; e-ISSN 1879-1573
Ook verschenen in:Nihoul, J.C.J.; Djenidi, S. (1991). Ice covered seas and ice edges: Physical, chemical and biological processes and interactions - Proceedings of the 22th International Liège Colloquium on Ocean Hydrodynamics. Journal of Marine Systems, 2. Elsevier Science Publishers: Amsterdam. 520 pp., meer
| |
Auteurs | | Top |
- Grebmeier, J.M.
- Barry, J.P.
|
|
|
Abstract |
Benthic community abundance and biomass in polar marine systems is directly influenced by food supply from the overlying water column. Variability in hydrographic regimes, ice coverage, light, water column temperature and pelagic food web structure limit the amount of organic carbon reaching the benthos. Data from the high Arctic and Antarctic indicate that a large percentage of surface-produced organic matter is consumed by both macro- and micro-zooplankton as well as recycled in the water column via the microbial loop. This results in food-limited regimes for the underlying benthos. The few exceptions are nearshore continental shelf systems, such as in the Bering and Chukchi Seas in the western Arctic and portions of the Canadian Archipelago and Barents Sea in the eastern Arctic, where high benthic abundance and biomass occurs due to a tight coupling between water column primary production and benthic secondary production. A major difference between the Antarctic and Arctic is that the nearshore deep Antarctic is characterized by relatively high benthic abundance and biomass despite low water column production, suggesting that stability, low disturbance levels and cold temperatures enable benthic organisms to grow larger than in the Arctic. Both physical and biological disturbance levels are high in the marginal seas of the Arctic may directly influence benthic productivity. The relationship between primary production and sedimentation of organic material to the benthos is nonlinear due to its dependence on the role of the pelagic food web. Therefore, in this review we will only discuss the pelagic system with respect to how it impacts the net food supply reachig the benthos. A major objective of this review paper is demonstrate the influence of oceanographic processes on pelagic-benthic coupling in polar regions from a “bottom-up” perspective, using benthic studies from various regions in both the Arctic and Antarctic. Similarities and differences in oceanographic processes, benthic abundance and biomass, and benthic carbon cycling within these polar marine systems are discussed and areas for further research identified. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.