Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
Comparison of free-surface and rigid-lid finite element models of barotropic instabilities
White, L.; Beckers, J.M.; Deleersnijder, E.; Legat, V. (2006). Comparison of free-surface and rigid-lid finite element models of barotropic instabilities. Ocean Dynamics 56(2): 86-103. dx.doi.org/10.1007/s10236-006-0059-0
In: Ocean Dynamics. Springer-Verlag: Berlin; Heidelberg; New York. ISSN 1616-7341; e-ISSN 1616-7228
| |
Author keywords |
finite element method; unstructured meshes; barotropic instabilities; |
Auteurs | | Top |
- White, L.
- Beckers, J.M.
- Deleersnijder, E.
- Legat, V.
|
|
|
Abstract |
The main goal of this work is to appraise the finite element method in the way it represents barotropic instabilities. To that end, three different formulations are employed. The free-surface formulation solves the primitive shallow-water equations and is of predominant use for ocean modeling. The vorticity-stream function and velocity-pressure formulations resort to the rigid-lid approximation and are presented because theoretical results are based on the same approximation. The growth rates for all three formulations are compared for hyperbolic tangent and piecewise linear shear flows. Structured and unstructured meshes are utilized. The investigation is also extended to time scales that allow for instability meanders to unfold, permitting the formation of eddies. We find that all three finite element formulations accurately represent barotropic instablities. In particular, convergence of growth rates toward theoretical ones is observed in all cases. It is also shown that the use of unstructured meshes allows for decreasing the computational cost while achieving greater accuracy. Overall, we find that the finite element method for free-surface models is effective at representing barotropic instabilities when it is combined with an appropriate advection scheme and, most importantly, adapted meshes. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.