Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
Convergent dynamics of the juvenile European sea bass gut microbiota induced by poly-β-hydroxybutyrate
De Schryver, P.; Dierckens, K.; Bahn Thi, Q.Q.; Amalia, R.; Marzorati, M.; Bossier, P.; Boon, N.; Verstraete, W. (2011). Convergent dynamics of the juvenile European sea bass gut microbiota induced by poly-β-hydroxybutyrate. Environ. Microbiol. 13(4): 1042-1051. http://dx.doi.org/10.1111/j.1462-2920.2010.02410.x
In: Environmental Microbiology. Blackwell Scientific Publishers: Oxford. ISSN 1462-2912; e-ISSN 1462-2920
| |
Auteurs | | Top |
- De Schryver, P.
- Dierckens, K.
- Bahn Thi, Q.Q.
- Amalia, R.
|
- Marzorati, M.
- Bossier, P.
- Boon, N.
- Verstraete, W.
|
|
Abstract |
Poly-ß-hydroxybutyrate (PHB) is a bacterial energy and carbon storage compound which exhibits a controlling effect on the gastrointestinal microbiota. Its beneficial activities for aquaculture have already been shown in terms of increased disease resistance and growth performance in a number of studies. However, the action of PHB on the intestinal microbial community in the treated animals has not yet been studied in depth. In this research, the effects of PHB on the microbiota composition in the intestinal tract of juvenile sea bass were examined. It was found that fish cohabiting in the same tank were on average 87% similar regarding the intestinal microbiota. When subjected to the same treatment and environmental conditions but reared in different tanks, the compositions of the enteric communities diverged. The provision of PHB overruled this tank effect by sustaining a microbial core community in the gut that represented 60% of the total bacterial diversity at the highest PHB level of 10%. The microbial community compositions converged between replicate tanks upon supplementation of PHB and were characterized by high dynamics and increased evenness. The results are discussed in the framework of hypotheses that try to relate the intestinal microbial community composition to the health status of the host organisms. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.