Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
Modelling fish habitat preference with a genetic algorithm-optimized Takagi-Sugeno model based on pairwise comparisons
Fukuda, S.; Waegeman, W.; Mouton, A.; De Baets, B. (2011). Modelling fish habitat preference with a genetic algorithm-optimized Takagi-Sugeno model based on pairwise comparisons, in: Melo-Pinto, P. et al. Eurofuse 2011: Workshop on Fuzzy Methods for Knowledge-Based Systems. Advances in Intelligent and Soft Computing, 107: pp. 375-387. http://dx.doi.org/10.1007/978-3-642-24001-0_34
In: Melo-Pinto, P. et al. (Ed.) (2011). Eurofuse 2011: Workshop on Fuzzy Methods for Knowledge-Based Systems. Advances in Intelligent and Soft Computing, 107. Springer: Berlin. ISBN 978-3-642-24001-0. XII, 426 pp. http://dx.doi.org/10.1007/978-3-642-24001-0
In: Advances in Intelligent and Soft Computing. Springer: Berlin. ISSN 1867-5662
| |
Auteurs | | Top |
- Fukuda, S.
- Waegeman, W.
- Mouton, A.
- De Baets, B.
|
|
|
Abstract |
Species-environment relationships are used for evaluating the current status of target species and the potential impact of natural or anthropogenic changes of their habitat. Recent researches reported that the results are strongly affected by the quality of a data set used. The present study attempted to apply pairwise comparisons to modelling fish habitat preference with Takagi-Sugeno-type fuzzy habitat preference models (FHPMs) optimized by a genetic algorithm (GA). The model was compared with the result obtained from the FHPM optimized based on mean squared error (MSE). Three independent data sets were used for training and testing of these models. The FHPMs based on pairwise comparison produced variable habitat preference curves from 20 different initial conditions in the GA. This could be partially ascribed to the optimization process and the regulations assigned. This case study demonstrates applicability and limitations of pairwise comparison-based optimization in an FHPM. Future research should focus on a more flexible learning process to make a good use of the advantages of pairwise comparisons. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.