Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
Assessing seabird displacement at offshore wind farms: power ranges of a monitoring and data handling protocol
Vanermen, N.; Onkelinx, T.; Verschelde, P.; Courtens, W.; Van de walle, M.; Verstraete, H.; Stienen, E.W.M. (2015). Assessing seabird displacement at offshore wind farms: power ranges of a monitoring and data handling protocol. Hydrobiologia 756(1): 155-167. http://dx.doi.org/10.1007/s10750-014-2156-2
In: Hydrobiologia. Springer: The Hague. ISSN 0018-8158; e-ISSN 1573-5117
| |
Trefwoord |
|
Author keywords |
Offshore wind farm Belgian North Sea Seabirds at sea Impact assessment BACI monitoring Power analysis Zero inflated negative binomial modelling |
Auteurs | | Top |
- Vanermen, N.
- Onkelinx, T.
- Verschelde, P.
- Courtens, W.
|
- Van de walle, M.
- Verstraete, H.
- Stienen, E.W.M.
|
|
Abstract |
Prior to the construction of an offshore wind farm at the Belgian Thorntonbank, local seabird abundance was studied by means of ship-based surveys. ‘Seabirds at sea’ count data, however, exhibit extreme spatial and temporal variation, impeding the detection of human impacts on seabird abundance and distribution. This paper proposes a transparent impact assessment method, following a before–after control–impact design and accounting for the statistical challenges inherent to ‘seabirds at sea’ data. By simulating a broad range of targeted scenarios based on empirical model coefficients, we tested its efficacy in terms of power and investigated how the chance of statistically detecting a change in numbers is affected by data characteristics, monitoring period and survey intensity. Because of high over-dispersion and/or zero inflation, the power to detect a 50% decrease in numbers was generally low, but did reach 90% within less than 10 years of post-impact monitoring for northern gannet (Morus bassanus) and common guillemot (Uria aalge). |
IMIS is ontwikkeld en wordt gehost door het VLIZ.