Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
Olivine dissolution in seawater: implications for CO2 sequestration through enhanced weathering in coastal environments
Montserrat, F.; Renforth, P.; Hartmann, J.; Leermakers, M.; Knops, P.; Meysman, F.J.R. (2017). Olivine dissolution in seawater: implications for CO2 sequestration through enhanced weathering in coastal environments. Environ. Sci. Technol. 51(7): 3960-3972. https://dx.doi.org/10.1021/acs.est.6b05942
In: Environmental Science and Technology. American Chemical Society: Easton. ISSN 0013-936X; e-ISSN 1520-5851
| |
Auteurs | | Top |
- Montserrat, F.
- Renforth, P.
- Hartmann, J.
|
- Leermakers, M.
- Knops, P.
- Meysman, F.J.R.
|
|
Abstract |
Enhanced weathering of (ultra)basic silicate rocks such as olivine-rich dunite has been proposed as a large-scale climate engineering approach. When implemented in coastal environments, olivine weathering is expected to increase seawater alkalinity, thus resulting in additional CO2 uptake from the atmosphere. However, the mechanisms of marine olivine weathering and its effect on seawater–carbonate chemistry remain poorly understood. Here, we present results from batch reaction experiments, in which forsteritic olivine was subjected to rotational agitation in different seawater media for periods of days to months. Olivine dissolution caused a significant increase in alkalinity of the seawater with a consequent DIC increase due to CO2 invasion, thus confirming viability of the basic concept of enhanced silicate weathering. However, our experiments also identified several important challenges with respect to the detailed quantification of the CO2 sequestration efficiency under field conditions, which include nonstoichiometric dissolution, potential pore water saturation in the seabed, and the potential occurrence of secondary reactions. Before enhanced weathering of olivine in coastal environments can be considered an option for realizing negative CO2 emissions for climate mitigation purposes, these aspects need further experimental assessment. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.