Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
Optimising assimilation of sea ice concentration in an Earth system model with a multicategory sea ice model
Kimmritz, M.; Counillon, F.; Bitz, C.M.; Massonnet, F.; Bethke, I.; Gao, Y. (2018). Optimising assimilation of sea ice concentration in an Earth system model with a multicategory sea ice model. Tellus, Ser. A, Dyn. meteorol. oceanogr. 70(1): 1435945. https://dx.doi.org/10.1080/16000870.2018.1435945
In: Tellus. Series A: Dynamic Meteorology and Oceanography. Blackwell: Copenhagen. ISSN 0280-6495; e-ISSN 1600-0870
| |
Trefwoord |
|
Author keywords |
sea ice; EnKF; strongly coupled assimilation; weakly coupledassimilation; flow-dependent assimilation |
Auteurs | | Top |
- Kimmritz, M.
- Counillon, F.
- Bitz, C.M.
|
- Massonnet, F.
- Bethke, I.
- Gao, Y.
|
|
Abstract |
A data assimilation method capable of constraining the sea ice of an Earth system model in a dynamically consistent manner has the potential to enhance the accuracy of climate reconstructions and predictions. Finding such a method is challenging because the sea ice dynamics is highly non-linear, and sea ice variables are strongly non-Gaussian distributed and tightly coupled to the rest of the Earth system - particularly thermodynamically with the ocean. We investigate key practical implementations for assimilating sea ice concentration - the predominant source of observations in polar regions - with the Norwegian Climate Prediction Model that combines the Norwegian Earth System Model with the Ensemble Kalman Filter. The performances of the different configurations are investigated by conducting 10-year reanalyses in a perfect model framework. First, we find that with a flow-dependent assimilation method, strongly coupled ocean-sea ice assimilation outperforms weakly coupled (sea ice only) assimilation. An attempt to prescribe the covariance between the ocean temperature and the sea ice concentration performed poorly. Extending the ocean updates below the mixed layer is slightly beneficial for the Arctic hydrography. Second, we find that solving the analysis for the multicategory instead of the aggregated ice state variables greatly reduces the errors in the ice state. Updating the ice volumes induces a weak drift in the bias for the thick ice category that relates to the postprocessing of unphysical thicknesses. Preserving the ice thicknesses for each category during the assimilation mitigates the drift without degrading the performance. The robustness and reliability of the optimal setting is demonstrated for a 20-year reanalysis. The error of sea ice concentration reduces by 50% (65%), sea ice thickness by 25% (35%), sea surface temperature by 33% (23%) and sea surface salinity by 11% (25%) in the Arctic (Antarctic) compared to a reference run without assimilation. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.