Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
[ meld een fout in dit record ] | mandje (0): toevoegen | toon |
A simple spatially explicit neutral model explains the range size distribution of reef fishes Alzate, A.; Janzen, T.; Bonte, D.; Rosindell, J.; Etienne, R.S. (2019). A simple spatially explicit neutral model explains the range size distribution of reef fishes. Glob. Ecol. Biogeogr. 28(7): 875-890. https://dx.doi.org/10.1111/geb.12899
In: Global Ecology and Biogeography. Blackwell Science: Oxford. ISSN 1466-822X; e-ISSN 1466-8238
|
Beschikbaar in | Auteurs |
|
Trefwoorden |
Marien/Kust |
Author keywords |
|
Auteurs | Top | |
|
|
Abstract |
The great variation in range sizes among species has fascinated ecologists for decades. Reef‐associated fish species live in highly spatially structured habitats and adopt a wide range of dispersal strategies. We consequently expect species with greater dispersal ability to occupy larger ranges. However, empirical evidence for such a positive relationship between dispersal and range size remains scarce. Here, we unveil the role of dispersal on the range size distribution of reef‐associated fishes using empirical data and a novel spatially explicit model. LocationTropical Eastern Pacific. Major taxa studiedReef‐associated fishes. Time periodUnderlying records are from the 20th and 21st centuries. MethodsWe estimated range size distributions for all reef‐associated fishes separated into six guilds, each with different dispersal abilities. We used a one‐dimensional spatially explicit neutral model, which simulates the distribution of species along a linear and contiguous coastline, to explore the effect of dispersal, speciation and sampling on the distribution of range sizes. Our model incorporates biologically important long‐distance dispersal events with a fat‐tailed dispersal kernel and also adopts a more realistic gradual “protracted” speciation process than originally used in neutral theory. We fitted the model to the empirical data using an approximate Bayesian computation approach, with a sequential Monte Carlo algorithm. ResultsStochastic birth, death, speciation and dispersal events alone can accurately explain empirical range size distributions for six different guilds of tropical, reef‐associated fishes. Variation in range size distributions among guilds are explained purely by differences in dispersal ability with the best dispersers being distributed over larger ranges. Main conclusionsNeutral processes and guild‐specific dispersal ability provide a general explanation for both within‐ and across‐guild range size variation. Our results support the theoretically expected, but empirically much debated, hypothesis that high dispersal capacity promotes the establishment of large range size. |
Top | Auteurs |