Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
A convolution method to assess subgrid‐scale interactions between flow and patchy vegetation in biogeomorphic models
Gourgue, O.; van Belzen, J.; Schwarz, C.; Bouma, T.J.; van de Koppel, J.; Temmerman, S. (2021). A convolution method to assess subgrid‐scale interactions between flow and patchy vegetation in biogeomorphic models. J. Adv. Model. Earth Syst. 13(2): e2020MS002116. https://doi.org/10.1029/2020MS002116
Bijhorende data:
In: Journal of Advances in Modeling Earth Systems. American Geophysical Union: Washington. e-ISSN 1942-2466
| |
Auteurs | | Top |
- Gourgue, O.
- van Belzen, J.
- Schwarz, C.
|
- Bouma, T.J.
- van de Koppel, J.
- Temmerman, S.
|
|
Abstract |
Interactions between water flow and patchy vegetation are governing the functioning of many ecosystems. Yet, numerical models that simulate those interactions explicitly at the submeter patch scale to predict geomorphological and ecological consequences at the landscape scale (order of km2) are still very computationally demanding. Here, we present a novel and efficient convolution technique to incorporate biogeomorphic feedbacks in numerical models across multiple spatial scales (from less than 1 m2 to several km2). This new methodology allows for spatially refining coarse‐resolution hydrodynamic simulations of flow velocities (order of m) around fine‐resolution patchy vegetation patterns (order of 10 cm). Although flow perturbations around each vegetation grid cell are not simulated with the same level of accuracy as with more expensive finer‐resolution models, we show that our approach enables spatial refinement of coarse‐resolution hydrodynamic models by resolving efficiently subgrid‐scale flow velocity patterns within and around vegetation patches (mean error, spatial variability, and spatial correlation improved by, respectively, 13%, 66%, and 49% on average in our test cases). We also provide evidence that our approach can substantially improve the representation of important biogeomorphic processes, such as subgrid‐scale effects on net sedimentation rate and habitable surface area for vegetation (respectively 66% and 39% better on average). Finally, we estimate that replacing a fine‐resolution model by a coarser‐resolution model associated with the convolution method could reduce the computational time of real‐life fluctuating flow simulations by several orders of magnitude. This marks an important step forward toward more computationally efficient multiscale biogeomorphic modeling. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.