Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
Deep learning shows promise for seasonal prediction of Antarctic sea ice in a rapid decline scenario
Dong, X.R.; Nie, Y.F.; Wang, J.; Luo, H.; Gao, Y.C.; Wang, Y.; Liu, J.P.; Chen, D.K.; Yang, Q.H. (2024). Deep learning shows promise for seasonal prediction of Antarctic sea ice in a rapid decline scenario. Adv. atmos. sci. Online First: 5. https://dx.doi.org/10.1007/s00376-024-3380-y
In: Advances in Atmospheric Sciences. China Ocean Press/Springer: Beijing. ISSN 0256-1530; e-ISSN 1861-9533
| |
Trefwoord |
|
Author keywords |
deep learning; Antarctic; sea ice; seasonal prediction |
Auteurs | | Top |
- Dong, X.R.
- Nie, Y.F.
- Wang, J.
|
- Luo, H.
- Gao, Y.C.
- Wang, Y.
|
- Liu, J.P.
- Chen, D.K.
- Yang, Q.H.
|
Abstract |
The rapidly changing Antarctic sea ice has garnered significant interest. To enhance the prediction skill for sea ice and respond to the Sea Ice Prediction Network-South’s latest call, this study presents the reforecast results of Antarctic sea-ice area and extent from December to June of the coming year with a Convolutional Long Short-Term Memory (ConvLSTM) Network. The reforecast experiments demonstrate that ConvLSTM captures the interannual and interseasonal variability of Antarctic sea ice successfully, and performs better than the European Centre for Medium-Range Weather Forecasts. Based on this, we present the prediction from December 2023 to June 2024, indicating that the Antarctic sea ice will remain at lows, but may not create a new record low. This research highlights the promising application of deep learning in Antarctic sea-ice prediction. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.