one publication added to basket [210722] | Wave run-up on cylindrical and cone shaped foundations for offshore wind turbines
In: Coastal Engineering: An International Journal for Coastal, Harbour and Offshore Engineers. Elsevier: Amsterdam; Lausanne; New York; Oxford; Shannon; Tokyo. ISSN 0378-3839; e-ISSN 1872-7379, meer
| |
Author keywords |
wave run-up; cylindrical monopile; conical monopile; offshore wind |
Auteurs | | Top |
- De Vos, L., meer
- Frigaard, P.
- De Rouck, J., meer
|
|
|
Abstract |
During the last decade, several offshore wind-farms were built and offshore wind energy promises to be a suitable alternative to provide green energy. However, there are still some engineering challenges in placing the foundations of offshore wind turbines. For example, wave run-up and wave impacts cause unexpected damage to boat landing facilities and platforms. To assess the forces due to wave run-up, the distribution of run-up around the pile and the maximum run-up height need to be known. This article describes a physical model study of the run-up heights and run-up distribution on two shapes of foundations for offshore wind turbines, including both regular and irregular waves. The influence of wave steepness, wave height and water depth on run-up is investigated. The measured run-up values are compared with applicable theories and previous experimental studies predicting run-up on a circular pile. The results show that the shape of the foundation substantially affects the maximum run-up level, increasing the expected run-up value. A new relationship between the wave climate (regular and irregular waves) and the run-up is suggested. For this, the velocity stagnation head theory is adjusted and second order Stokes equations are used to calculate the wave kinematics in the crest. The variation of the run-up around the pile is measured and it is found that the position with the lowest run-up level is located under 135, while the run-up at that position amounts to approximately 40% to 50% of the maximum run-up. |
|