Overslaan en naar de inhoud gaan
Publicaties | Personen | Instituten | Projecten
[ meld een fout in dit record ]mandje (1): toevoegen | toon Print deze pagina

one publication added to basket [339419]
Space-filling and benthic competition on coral reefs
George, E.; Mullinix, J.A.; Meng, F.; Bailey, B.A.; Edwards, C.; Felts, B.; Haas, A.F.; Hartmann, A.C.; Mueller, B.; Roach, T.N.F.; Salamon, P.; Silveira, C.B.; Vermeij, M.J.A.; Rohwer, F.; Luque, A. (2021). Space-filling and benthic competition on coral reefs. PeerJ 9: e11213. https://dx.doi.org/10.7717/peerj.11213

Bijhorende data:
In: PeerJ. PeerJ: Corte Madera & London. e-ISSN 2167-8359, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Author keywords
    Coral geometry; Coral competition; Coral ecology; Photogrammetry; 3D modelling

Auteurs  Top 
  • George, E.
  • Mullinix, J.A.
  • Meng, F.
  • Bailey, B.A.
  • Edwards, C.
  • Felts, B.
  • Haas, A.F., meer
  • Hartmann, A.C.
  • Mueller, B.
  • Roach, T.N.F.
  • Salamon, P.
  • Silveira, C.B.
  • Vermeij, M.J.A.
  • Rohwer, F.
  • Luque, A.

Abstract
    Reef-building corals are ecosystem engineers that compete with other benthic organisms for space and resources. Corals harvest energy through their surface by photosynthesis and heterotrophic feeding, and they divert part of this energy to defend their outer colony perimeter against competitors. Here, we hypothesized that corals with a larger space-filling surface and smaller perimeters increase energy gain while reducing the exposure to competitors. This predicted an association between these two geometric properties of corals and the competitive outcome against other benthic organisms. To test the prediction, fifty coral colonies from the Caribbean island of Curaçao were rendered using digital 3D and 2D reconstructions. The surface areas, perimeters, box-counting dimensions (as a proxy of surface and perimeter space-filling), and other geometric properties were extracted and analyzed with respect to the percentage of the perimeter losing or winning against competitors based on the coral tissue apparent growth or damage. The increase in surface space-filling dimension was the only significant single indicator of coral winning outcomes, but the combination of surface space-filling dimension with perimeter length increased the statistical prediction of coral competition outcomes. Corals with larger surface space-filling dimensions (Ds> 2) and smaller perimeters displayed more winning outcomes, confirming the initial hypothesis. We propose that the space-filling property of coral surfaces complemented with other proxies of coral competitiveness, such as life history traits, will provide a more accurate quantitative characterization of coral competition outcomes on coral reefs. This framework also applies to other organisms or ecological systems that rely on complex surfaces to obtain energy for competition.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs