one publication added to basket [351209] | Efficient long-range conduction in cable bacteria through nickel protein wires
Boschker, H.T.S.; Cook, P.L.M.; Polerecky, L.; Eachambadi, R.T.; Lozano, H.; Hidalgo-Martinez, S.; Khalenkow, D.; Spampinato, V.; Claes, N.; Kundu, P.; Wang, D.; Bals, S.; Sand, K.K.; Cavezza, F.; Hauffman, T.; Bjerg, J.T.; Skirtach, A.G.; Kochan, K.; McKee, M.; Wood, B.; Bedolla, D.; Gianoncelli, A.; Geerlings, N.M.J.; Van Gerven, N.; Remaut, H.; Remaut, H.; Geelhoed, J.S.; Millan-Solsona, R.; Fumagalli, L.; Nielsen, L.P.; Franquet, A.; Manca, J.V.; Gomila, G.; Meysman, F.J.R. (2021). Efficient long-range conduction in cable bacteria through nickel protein wires. Nature Comm. 12: 3996. https://dx.doi.org/10.1038/s41467-021-24312-4
In: Nature Communications. Nature Publishing Group: London. ISSN 2041-1723; e-ISSN 2041-1723, meer
| |
Auteurs | | Top |
- Boschker, H.T.S., meer
- Cook, P.L.M.
- Polerecky, L.
- Eachambadi, R.T., meer
- Lozano, H.
- Hidalgo-Martinez, S., meer
- Khalenkow, D.
- Spampinato, V.
- Claes, N.
- Kundu, P.
- Wang, D.
- Bals, S., meer
|
- Sand, K.K.
- Cavezza, F.
- Hauffman, T.
- Bjerg, J.T.
- Skirtach, A.G.
- Kochan, K.
- McKee, M.
- Wood, B.
- Bedolla, D.
- Gianoncelli, A.
- Geerlings, N.M.J.
|
- Van Gerven, N.
- Remaut, H.
- Remaut, H.
- Geelhoed, J.S., meer
- Millan-Solsona, R.
- Fumagalli, L.
- Nielsen, L.P.
- Franquet, A.
- Manca, J.V.
- Gomila, G.
- Meysman, F.J.R., meer
|
Abstract |
Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures. |
|