Overslaan en naar de inhoud gaan
Publicaties | Personen | Instituten | Projecten
[ meld een fout in dit record ]mandje (1): toevoegen | toon Print deze pagina

one publication added to basket [361107]
Phase-separation physics underlies new theory for the resilience of patchy ecosystems
Siteur, K.; Liu, Q-X; Rottschäfer, V.; van der Heide, T.; Rietkerk, M.; Doelman, A.; Boström, C.; van de Koppel, J. (2023). Phase-separation physics underlies new theory for the resilience of patchy ecosystems. Proc. Natl. Acad. Sci. U.S.A. 120(2): e2202683120. https://dx.doi.org/10.1073/pnas.2202683120

Bijhorende data:
In: Proceedings of the National Academy of Sciences of the United States of America. The Academy: Washington, D.C.. ISSN 0027-8424; e-ISSN 1091-6490, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Author keywords
    self-organization; pattern formation; ecosystem resilience; early-warning signals

Auteurs  Top 
  • Siteur, K., meer
  • Liu, Q-X, meer
  • Rottschäfer, V.
  • van der Heide, T., meer
  • Rietkerk, M.
  • Doelman, A.
  • Boström, C., meer
  • van de Koppel, J., meer

Abstract
    Spatial self-organization of ecosystems into large-scale (from micron to meters) patterns is an important phenomenon in ecology, enabling organisms to cope with harsh environmental conditions and buffering ecosystem degradation. Scale-dependent feedbacks provide the predominant conceptual framework for self-organized spatial patterns, explaining regular patterns observed in, e.g., arid ecosystems or mussel beds. Here, we highlight an alternative mechanism for self-organized patterns, based on the aggregation of a biotic or abiotic species, such as herbivores, sediment, or nutrients. Using a generalized mathematical model, we demonstrate that ecosystems with aggregation-driven patterns have fundamentally different dynamics and resilience properties than ecosystems with patterns that formed through scale-dependent feedbacks. Building on the physics theory for phase-separation dynamics, we show that patchy ecosystems with aggregation patterns are more vulnerable than systems with patterns formed through scale-dependent feedbacks, especially at small spatial scales. This is because local disturbances can trigger large-scale redistribution of resources, amplifying local degradation. Finally, we show that insights from physics, by providing mechanistic understanding of the initiation of aggregation patterns and their tendency to coarsen, provide a new indicator framework to signal proximity to ecological tipping points and subsequent ecosystem degradation for this class of patchy ecosystems.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs