Overkoepelend instituut: SIRRIS, meer
|
1 Directeur: Hoofd van de onderzoeksgroep/afdeling 2 Mariene onderzoeker: Is werkzaam in deze groep en treedt op als (co)auteur in minstens één mariene publicatie in de laatste 5 jaar. 3 Gespecialiseerd personeel: Levert administratieve of technische ondersteuning aan het zeewetenschappelijk onderzoek.
Abstract: |
The ‘Offshore Wind Infrastructure Application Lab’ (OWI-Lab) is a R&D initiative which aims to initiate and support innovation projects concerning offshore wind energy. The project itself aims to increase the reliability and efficiency of offshore wind farms by investing in testing and monitoring equipment that can help the industry in reaching these goals.
Onshore wind energy becomes a mature technology, offshore wind energy is rather new and technology has to be adapted to this harsh environment. Next to that the offshore wind kwh-cost must go down to coming years in order to reach grid parity and become competitive to onshore technologies. To reach this goal we must invest in R&D and stimulate incentives in this growing industry.
But Belgian and other European companies still miss access to test infrastructure and relevant datasets to support and accelerate their innovation process in order make their wind turbine components reliable and efficient. OWI-Lab wil be one of the offshore wind energy supporters by investing in specific test and monitoring infra-structure and initiate innovation projects together with industry and academic players.
This initiative is a collaboration between Hansen Transmissions, 3E, GeoSea (DEME), CG Power Belgium, VUB, Agoria Renewable Energy Club, Generaties and Sirris. The OWI-Lab will be implemented and coordinated by Sirris, the collective centre of the Belgian technological industry. |
Publicaties (42) |
Top | Personen |
( 26 peer reviewed ) opsplitsen filter
- Hlaing, N.; Morato, P.G.; de Nolasco Santos, F.; Weijtjens, W.; Devriendt, C.; Rigo, P. (2024). Farm-wide virtual load monitoring for offshore wind structures via Bayesian neural networks. Structural Health Monitoring 23(3): 1641-1663. https://dx.doi.org/10.1177/14759217231186048, meer
- Daems, P.-J.; Peeters, C.; Matthys, J.; Verstraeten, T.; Helsen, J. (2023). Fleet-wide analytics on field data targeting condition and lifetime aspects of wind turbine drivetrains. Forschung im Ingenieurwesen-Engineering Research 87(1): 285-295. https://dx.doi.org/10.1007/s10010-023-00643-0, meer
- de Nolasco Santos, F.; D'Antuono, P.; Robbelein, K.; Noppe, N.; Weijtjens, W.; Devriendt, C. (2023). Long-term fatigue estimation on offshore wind turbines interface loads through loss function physics-guided learning of neural networks. Renew. Energy 205: 461-474. https://dx.doi.org/10.1016/j.renene.2023.01.093, meer
- Gaborieau, M.; Yilmaz, O.C.; Dykes, K. (2023). Economic impact assessment of hydrogen generated from offshore wind: a case study for Belgium. Journal of Physics: Conference Series 2507: 012012. https://dx.doi.org/10.1088/1742-6596/2507/1/012012, meer
- Stuyts, B.; Weijtjens, W.; Gkougkoudi-Papaioannou, M.; Devriendt, C.; Troch, P.; Kheffache, A. (2023). Insights from in-situ pore pressure monitoring around a wind turbine monopile. Ocean Eng. 269: 113556. https://dx.doi.org/10.1016/j.oceaneng.2022.113556, meer
- Stuyts, B.; Weijtjens, W.; Devriendt, C. (2023). Development of a semi-structured database for back-analysis of the foundation stiffness of offshore wind monopiles. Acta Geotechnica 18: 379-393. https://dx.doi.org/10.1007/s11440-022-01551-3, meer
- de Nolasco Santos, F.; Noppe, N.; Weijtjens, W.; Devriendt, C. (2022). Data-driven farm-wide fatigue estimation on jacket-foundation OWTs for multiple SHM setups. Wind Energy Science 7(1): 299-321. https://dx.doi.org/10.5194/wes-7-299-2022, meer
- Fallais, D.J.M.; Henkel, M.; Noppe, N.; Weijtjens, W.; Devriendt, C. (2022). Multilevel RTN removal tools for dynamic FBG strain measurements corrupted by peak-splitting artefacts. Sensors 22(1): 92. https://dx.doi.org/10.3390/s22010092, meer
- Nejad, A.R.; Keller, J.; Guo, Y.; Sheng, S.; Polinder, H.; Watson, S.; Dong, J.; Qin, Z.; Ebrahimi, A.; Schelenz, R.; Gutiérrez Guzmán, F.; Cornel, D.; Golafshan, R.; Jacobs, G.; Blockmans, B.; Carroll, J.; Koukoura, S.; Hart, E.; McDonald, A.; Natarajan, A.; Torsvik, J.; Moghadam, F.K.; Daems, P.-J.; Verstraeten, T.; Peeters, C.; Helsen, J. (2022). Wind turbine drivetrains: state-of-the-art technologies and future development trends. Wind Energy Science 7(1): 387-411. https://dx.doi.org/10.5194/wes-7-387-2022, meer
- Daems, P.-J.; Verstraeten, T.; Peeters, C.; Helsen, J. (2021). Effects of wake on gearbox design load cases identified from fleet-wide operational data. Forschung im Ingenieurwesen-Engineering Research 85: 553-558. https://hdl.handle.net/10.1007/s10010-021-00444-3, meer
- Helsen, J. (2021). Review of research on condition monitoring for improved O&M of offshore wind turbine drivetrains. Acoustics Australia 49(2): 251-258. https://dx.doi.org/10.1007/s40857-021-00237-2, meer
- Henkel, M.; Weijtjens, W.; Devriendt, C. (2021). Fatigue stress estimation for submerged and sub-soil welds of offshore wind turbines on monopiles using modal expansion. Energies (Basel) 14(22): 7576. https://dx.doi.org/10.3390/en14227576, meer
- Weijtjens, W.; Stang, A.; Devriendt, C.; Schaumann, P. (2021). Bolted ring flanges in offshore-wind support structures - in-situ validation of load-transfer behaviour. Journal of Constructional Steel Research 176: 106361. https://hdl.handle.net/10.1016/j.jcsr.2020.106361, meer
- de Nolasco Santos, F.; Noppe, N.; Weijtjens, W.; Devriendt, C. (2020). SCADA-based neural network thrust load model for fatigue assessment: cross validation with in-situ measurements. Journal of Physics: Conference Series 1618(2): 022020. https://dx.doi.org/10.1088/1742-6596/1618/2/022020, meer
- Noppe, N.; Hubler, C.; Devriendt, C.; Weijtjens, W. (2020). Validated extrapolation of measured damage within an offshore wind farm using instrumented fleet leaders. Journal of Physics: Conference Series 1618(2): 022005. https://dx.doi.org/10.1088/1742-6596/1618/2/022005, meer
- Hubler, C.; Weijtjens, W.; Gebhardt, C.G.; Rolfes, R.; Devriendt, C. (2019). Validation of improved sampling concepts for offshore wind turbine fatigue design. Energies (Basel) 12(4): 603. https://dx.doi.org/10.3390/en12040603, meer
- Verstraeten, T.; Nowe, A.; Keller, J.; Guo, Y.; Sheng, S.W.; Helsen, J. (2019). Fleetwide data-enabled reliability improvement of wind turbines. Renew. Sust. Energ. Rev. 109: 428-437. https://dx.doi.org/10.1016/j.rser.2019.03.019, meer
- Hubler, C.; Weijtjens, W.; Rolfes, R.; Devriendt, C. (2018). Reliability analysis of fatigue damage extrapolations of wind turbines using offshore strain measurements. Journal of Physics: Conference Series 1037: 032035. https://dx.doi.org/10.1088/1742-6596/1037/3/032035, meer
- Noppe, N.; Weijtjens, W.; Devriendt, C. (2018). Modeling of quasi-static thrust load of wind turbines based on 1 s SCADA data. Wind Energy Science 3(1): 139-147. https://dx.doi.org/10.5194/wes-3-139-2018, meer
- Helsen, J.; Gioia, N.; Peeters, C.; Jordaens, P.J. (2017). Integrated condition monitoring of a fleet of offshore wind turbines with focus on acceleration streaming processing. Journal of Physics: Conference Series 842: 012052. https://dx.doi.org/10.1088/1742-6596/842/1/012052, meer
- Weijtjens, W.; Verbelen, T.; Capello, E.; Devriendt, C. (2017). Vibration based structural health monitoring of the substructures of five offshore wind turbines. Procedia Engineering 199: 2294-2299. https://dx.doi.org/10.1016/j.proeng.2017.09.187, meer
- Janssens, O.; Noppe, N.; Devriendt, C.; Van de Walle, R.; Van Hoecke, S. (2016). Data-driven multivariate power curve modeling of offshore wind turbines. Engineering Applications of Artificial Intelligence 55: 331-338. https://dx.doi.org/10.1016/j.engappai.2016.08.003, meer
- Noppe, N.; Iliopoulos, A.; Weijtjens, W.; Devriendt, C. (2016). Full load estimation of an offshore wind turbine based on SCADA and accelerometer data. Journal of Physics: Conference Series 753: 072025. https://dx.doi.org/10.1088/1742-6596/753/7/072025, meer
- Weijtjens, W.; Noppe, N.; Verbelen, T.; Iliopoulos, A.; Devriendt, C. (2016). Offshore wind turbine foundation monitoring, extrapolating fatigue measurements from fleet leaders to the entire wind farm. Journal of Physics: Conference Series 753: 092018. https://dx.doi.org/10.1088/1742-6596/753/9/092018, meer
- Devriendt, C.; Weijtjens, W.; El-Kafafy, M.; De Sitter, G. (2014). Monitoring resonant frequencies and damping values of an offshore wind turbine in parked conditions. IET Renew. Power Gener. 8(4): 433-441. http://dx.doi.org/10.1049/iet-rpg.2013.0229, meer
- Devriendt, C.; Jordaens, P.J.; De Sitter, G.; Guillaume, P. (2013). Damping estimation of an offshore wind turbine on a monopile foundation. IET Renew. Power Gener. 7(4): 401-412. dx.doi.org/10.1049/iet-rpg.2012.0276, meer
- Bel-Hadj, Y.; Weijtjens, W. (2023). Anomaly detection in vibration signals for structural health monitoring of an offshore wind turbine, in: Rizzo, P. et al. European Workshop on Structural Health Monitoring. EWSHM 2022 - Volume 3. pp. 348-358. https://dx.doi.org/10.1007/978-3-031-07322-9_36, meer
- de Nolasco Santos, F.; Robbelein, K.; D'Antuono, P.; Noppe, N.; Weijtjens, W.; Devriendt, C. (2023). Towards a fleetwide data-driven lifetime assessment methodology of offshore wind support structures based on SCADA and SHM data, in: Rizzo, P. et al. European Workshop on Structural Health Monitoring. EWSHM 2022 - Volume 1. pp. 123-132. https://dx.doi.org/10.1007/978-3-031-07254-3_13, meer
- Goethals, A.; Mentens, J.; Mathys, P.; Rumes, B.; Moerman, D.; Heylen, B.; Mouffe, L.; Gabriëls, S.; Deleu, P.; Paladin, P.; Weijtjens, W.; Jordaens, P.J.; Moulaert, I.; Dauwe, S. (2023). Energie (inclusief kabels en leidingen). Compendium voor Kust en Zee = Compendium for Coast and Sea 2023: 1-26. https://dx.doi.org/10.48470/45, meer
- Goethals, A.; Mentens, J.; Mathys, P.; Rumes, B.; Moerman, D.; Heylen, B.; Mouffe, L.; Gabriëls, S.; Deleu, P.; Paladin, P.; Weijtjens, W.; Jordaens, P.J.; Moulaert, I.; Dauwe, S. (2023). Energy (including cables and pipes). Compendium voor Kust en Zee = Compendium for Coast and Sea 2023: 1-25. https://dx.doi.org/10.48470/46, meer
- Goethals, A.; Mentens, J.; Mathys, P.; Rumes, B.; Moerman, D.; Heylen, B.; Mouffe, L.; Gabriëls, S.; Deleu, P.; Paladin, P.; Weijtjens, W.; Jordaens, P.J.; Moulaert, I.; Dauwe, S. (2022). Energie (inclusief kabels en leidingen), in: Dauwe, S. et al. Kennisgids Gebruik Kust en Zee 2022 - Compendium voor Kust en Zee. pp. 79-104, meer
- Goethals, A.; Mentens, J.; Mathys, P.; Rumes, B.; Moerman, D.; Heylen, B.; Mouffe, L.; Gabriëls, S.; Deleu, P.; Paladin, P.; Weijtjens, W.; Jordaens, P.J.; Moulaert, I.; Dauwe, S. (2022). Energy (including cables and pipes), in: Dauwe, S. et al. Knowledge Guide Coast and Sea 2022 - Compendium for Coast and Sea. pp. 79-102, meer
- Henkel, M.; Weijtjens, W.; Devriendt, C. (2019). Validation of virtual sensing on subsoil strain data of an offshore wind turbine, in: Amador, S.D.R. et al. 8th International Operational Modal Analysis Conference (IOMAC 2019). pp. 765-774, meer
- Seys, J.; Pirlet, H.; Staelens, P.; Herrier, J.-L.; Geldof, C.; Jordaens, P.J. (2019). De zee van de toekomst: een reis met de teletijdmachine, in: De Grote Rede 50. De Grote Rede: Nieuws over onze Kust en Zee, 50: pp. 10-14, meer
- Heylen, B.; Moerman, D.; Mouffe, L.; De Maeyer, J.; Mathys, P.; Rumes, B.; Devriendt, C.; Weijtjens, W.; Dauwe, S.; Pirlet, H. (2018). Energie (inclusief kabels en leidingen), in: Devriese, L. et al. Kennisgids Gebruik Kust en Zee 2018 - Compendium voor Kust en Zee. Compendium voor Kust en Zee = Compendium for Coast and Sea, : pp. 91-114, meer
- Heylen, B.; Moerman, D.; Mouffe, L.; De Maeyer, J.; Mathys, P.; Rumes, B.; Devriendt, C.; Weijtjens, W.; Dauwe, S.; Pirlet, H. (2018). Energy (including cables and pipes), in: Devriese, L. et al. Knowledge Guide Coast and Sea 2018 - Compendium for Coast and Sea. Compendium voor Kust en Zee = Compendium for Coast and Sea, : pp. 91-113, meer
- Bunnik, T.; Weijtjens, W.; Devriendt, C. (2017). Simulation of wave impacts at BELWIND offshore wind farm and comparison with full-scale measurements, in: Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2017): Volume 10: Ocean Renewable Energy. pp. 1-7, meer
- El-Kafafy, M.; Colanero, L.; Gioia, N.; Devriendt, C.; Guillaume, P.; Helsen, J. (2017). Modal parameters estimation of an offshore wind turbine using measured acceleration signals from the Drive Train, in: Niezrecki, C. (Ed.) Structural Health Monitoring & Damage Detection, Volume 7. pp. 41-48. https://dx.doi.org/10.1007/978-3-319-54109-9_5, meer
- Helsen, J.; Peeters, C.; Doro, P.; Ververs, E.; Jordaens, P.J. (2017). Wind farm operation and maintenance optimization using big data, in: IEEE BigDataService 2017. The Third IEEE International Conference on Big Data Computing Service and Applications, San Francisco, 6 – 10 April 2017. pp. 179-184. https://dx.doi.org/10.1109/BigDataService.2017.27, meer
- Weijtjens, W.; Noppe, N.; Verbelen, T.; Devriendt, C.; Iliopoulos, A. (2017). Fatigue life assessment of three offshore wind turbines, in: Bakker, J. et al. (Ed.) Life-Cycle of Engineering Systems: Emphasis on Sustainable Civil Infrastructure: Proceedings of the Fifth International Symposium on Life-Cycle Civil Engineering (IALCCE 2016), 16-19 October 2016, Delft, The Netherlands. pp. 742-747, meer
- Helsen, J.; De Sitter, G.; Jordaens, P.J. (2016). Long-term monitoring of wind farms using big data approach, in: IEEE BigDataService 2016. Second IEEE international conference on big data computing service and applications, Oxford, United Kingdom. pp. 265-268. https://dx.doi.org/10.1109/BigDataService.2016.49, meer
- Weijtjens, W.; De Sitter, G.; Devriendt, C.; Guillaume, P. (2015). Automated operational modal analysis on an offshore wind turbine: challenges, results and opportunities, in: Aenlle, M.L. et al. (Ed.) IOMAC'15. 6th International Operational Modal Analysis Conference. pp. 713-730, meer
|
|