Instituut |
Top | Instituut | Publicaties |
Koninklijk Nederlands Instituut voor Onderzoek der Zee; Marine Microbiology and Biogeochemistry (MMB), meer
Functie: Tenure track Scientist
Contact op het instituut:
Tel.: +31-(0)222-36 95 26
E-mail:
| |
Publicaties (32) |
Top | Instituut | Publicaties |
A1 publicaties (28) [show] |
- Ding, S.; Hamm, J.N.; Bale, N.J.; Sinninghe Damsté, J.S.; Spang, A. (2024). Selective lipid recruitment by an archaeal DPANN symbiont from its host. Nature Comm. 15(1): 3405. https://dx.doi.org/10.1038/s41467-024-47750-2, meer
- Greening, C.; Cabotaje, P.R.; Valentin A., L.E.; Leung, P.M.; Land, H.; Rodrigues-Oliveira, T.; Ponce-Toledo, R.I.; Senger, M.; Klamke, M.A.; Milton, M.; Lappan, R.; Mullen, S.; West-Roberts, J.; Mao, J.; Song, J.; Schoelmerich, M.; Stairs, C.W.; Schleper, C.; Grinter, R.; Spang, A.; Banfield, J.F.; Berggren, G. (2024). Minimal and hybrid hydrogenases are active from archaea. Cell 187(13): 3357-3372.e19. https://dx.doi.org/10.1016/j.cell.2024.05.032, meer
- Donoghue, P.C.J.; Kay, C.; Spang, A.; Szöllosi, G.J.; Nenarokova, A.; Moody, E.R.R.; Pisani, D.; Williams, T.A. (2023). Defining eukaryotes to dissect eukaryogenesis. Curr. Biol. 33(17): R919-R929. https://dx.doi.org/10.1016/j.cub.2023.07.048, meer
- Mahendrarajah, T.A.; Moody, E.R.R.; Schrempf, D.; Szánthó, L.L.; Dombrowski, N.; Davín, A.A.; Pisani, D.; Donoghue, P.C.J.; Szöllosi, G.J.; Williams, T.A.; Spang, A. (2023). ATP synthase evolution on a cross-braced dated tree of life. Nature Comm. 14(1): 7456. https://dx.doi.org/10.1038/s41467-023-42924-w, meer
- Spang, A. (2023). Uncovering the hidden world of nanosized archaea. Nat. Rev., Microbiol. 21(10): 638-638. https://dx.doi.org/10.1038/s41579-023-00912-3, meer
- Spang, A. (2023). Is an archaeon the ancestor of eukaryotes? Environ. Microbiol. 25(4): 775-779. https://dx.doi.org/10.1111/1462-2920.16323, meer
- van der Gulik, P.T.S.; Egas, M.; Kraaijeveld, K.; Dombrowski, N.; Groot, A.T.; Spang, A.; Hoff, W.D.; Gallie, J. (2023). On distinguishing between canonical tRNA genes and tRNA gene fragments in prokaryotes. Rna Biology 20: 48-58. https://dx.doi.org/10.1080/15476286.2023.2172370, meer
- Williams, T.A.; Davín, A.A.; Morel, B.; Szánthó, L.L.; Spang, A.; Stamatakis, A.; Hugenholtz, P.; Szöllosi, G.J. (2023). Parameter Estimation and Species Tree Rooting Using ALE and GeneRax. Genome Biology and Evolution 15(7). https://dx.doi.org/10.1093/gbe/evad134, meer
- Krause, S.; Gfrerer, S.; von Kügelgen, A.; Reuse, C.; Dombrowski, N.; Villanueva, L.; Bunk, B.; Spröer, C.; Neu, T.R.; Kuhlicke, U.; Schmidt-Hohagen, K.; Hiller, K.; Bharat, T.A.M.; Rachel, R.; Spang, A.; Gescher, J. (2022). The importance of biofilm formation for cultivation of a Micrarchaeon and its interactions with its Thermoplasmatales host. Nature Comm. 13: 1735. https://dx.doi.org/10.1038/s41467-022-29263-y, meer
- Moody, E.R.R.; Mahendrarajah, T.A.; Dombrowski, N.; Clark, J.W.; Petitjean, C.; Offre, P.; Szöllosi, G.J.; Spang, A.; Williams, T.A. (2022). An estimate of the deepest branches of the tree of life from ancient vertically evolving genes. eLIFE 11: e66695. https://dx.doi.org/10.7554/elife.66695, meer
- Spang, A.; Mahendrarajah, T.A.; Offre, P.; Stairs, C.W. (2022). Evolving perspective on the origin and diversification of cellular life and the virosphere. Genome Biology and Evolution 14(6): evac034. https://dx.doi.org/10.1093/gbe/evac034, meer
- Coleman, G.A.; Davín, A.A.; Mahendrarajah, T.A.; Szánthó, L.L.; Spang, A.; Hugenholtz, P.; Szöllosi, G.J.; Williams, T.A. (2021). A rooted phylogeny resolves early bacterial evolution. Science (Wash.) 372(6542): eabe0511. https://doi.org/10.1126/science.abe0511, meer
- Dharamshi, J.E.; Tamarit, D.; Eme, L.; Stairs, C.W.; Martijn, J.; Homa, F.; Jorgensen, S.L.; Spang, A.; Ettema, T.J.G. (2020). Marine sediments illuminate Chlamydiae diversity and evolution. Curr. Biol. 30(6): 1032-1048.e7. https://dx.doi.org/10.1016/j.cub.2020.02.016, meer
- Dombrowski, N.; Williams, T.A.; Sun, J.; Woodcroft, B.J.; Lee, J.-H.; Minh, B.Q.; Rinke, C.; Spang, A. (2020). Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution. Nature Comm. 11: Article number: 3939. https://dx.doi.org/10.1038/s41467-020-17408-w, meer
- Martijn, J.; Schön, M.E.; Lind, A.E.; Vosseberg, J.; Williams, T.A.; Spang, A.; Ettema, T.J.G. (2020). Hikarchaeia demonstrate an intermediate stage in the methanogen-to-halophile transition. Nature Comm. 11: 5490. https://doi.org/10.1038/s41467-020-19200-2, meer
- Murray, A. E.; Freudenstein, J.; Gribaldo, S.; Hatzenpichler, R.; Hugenholtz, P.; Kämpfer, P.; Konstantinidis, K. T.; Lane, C. E.; Papke, R. T.; Parks, D. H.; Rossello-Mora, R.; Stott, M. B.; Sutcliffe, I. C.; Thrash, J. C.; Venter, S. N.; Whitman, W. B.; Acinas, S. G.; Amann, R. I.; Anantharaman, K.; Armengaud, J.; Baker, B. J.; Barco, R. A.; Bode, H. B.; Boyd, E. S.; Brady, C. L.; Carini, P.; Chain, P. S. G.; Colman, D. R.; DeAngelis, K. M.; de los Rios, Ma. A.; Estrada-de los Santos, P.; Dunlap, C. A.; Eisen, J. A.; Emerson, D.; Ettema, T. J. G.; Eveillard, D.; Girguis, P. R.; Hentschel, U.; Hollibaugh, J. T.; Hug, L. A.; Inskeep, W. P.; Ivanova, E. P.; Klenk, H.-P.; Li, W.-J.; Lloyd, K. G.; Löffler, F. E.; Makhalanyane, T. P.; Moser, D. P.; Nunoura, T.; Palmer, M.; Parro, V.; Pedrós-Alió, C.; Probst, A. J.; Smits, T. H. M.; Steen, A. D.; Steenkamp, E. T.; Spang, A.; Stewart, F. J.; Tiedje, J. M.; Vandamme, P.; Wagner, M.; Wang, F.-P.; Hedlund, B. P.; Reysenbach, A.-L. (2020). Roadmap for naming uncultivated Archaea and Bacteria. Nature Microbiology 5(8): 987-994. https://dx.doi.org/10.1038/s41564-020-0733-x, meer
- Reysenbach, A.-L.; St. John, E.; Meneghin, J.; Flores, G.E.; Podar, M.; Dombrowski, N.; Spang, A.; L'Haridon, S.; Humphris, S.E.; De Ronde, C.E.J.; Caratori-Tontini, F.; Tivey, M.; Stucker, V.K.; Stewart, L.C.; Diehl, A.; Bach, W. (2020). Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities. Proc. Natl. Acad. Sci. U.S.A. 117(51): 32627-32638. https://doi.org/10.1073/pnas.2019021117, meer
- Stairs, C.W.; Sharamshi, J.E.; Tamarit, D.; Eme, L.; Jorgensen, S.L.; Spang, A.; Ettema, T.J.G. (2020). Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. Science Advances 6(35): eabb7258. https://dx.doi.org/10.1126/sciadv.abb7258, meer
- Bäckström, D.; Yutin, N.; Jorgensen, S.L.; Dharamshi, J.; Homa, F.; Zaremba-Niedwiedzka, K.; Spang, A.; Wolf, Y.I.; Koonin, E.V.; Ettema, T.J.G. (2019). Virus genomes from deep sea sediments expand the ocean megavirome and support independent origins of viral gigantism. Mbio 10(2): e02497-18. https://dx.doi.org/10.1128/mbio.02497-18, meer
- Camprubí, E.; de Leeuw, J.W.; House, C.H.; Raulin, F.; Russell, M.J.; Spang, A.; Tirumalai, M.R.; Westall, F. (2019). The emergence of life. Space Science Reviews 215(8). https://dx.doi.org/10.1007/s11214-019-0624-8, meer
- Dombrowski, N.; Lee, J.-H.; Williams, T.A.; Offre, P.; Spang, A. (2019). Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol. Lett. 366(2): 1-12. https://dx.doi.org/10.1093/femsle/fnz008, meer
- Schwank, K.; Bornemann, T.L.V.; Dombrowski, N.; Spang, A.; Banfield, J.F.; Probst, A. (2019). An archaeal symbiont-host association from the deep terrestrial subsurface. ISME J. 13(8): 2135-2139. https://dx.doi.org/10.1038/s41396-019-0421-0, meer
- Seitz, K.W.; Dombrowski, N.; Eme, L.; Spang, A.; Lombard, J.; Sieber, J.R.; Teske, A.P.; Ettema, T.J.G.; Baker, B.J. (2019). Asgard archaea capable of anaerobic hydrocarbon cycling. Nature Comm. 10(1): 1822. https://dx.doi.org/10.1038/s41467-019-09364-x, meer
- Spang, A.; Stairs, C.W.; Dombrowski, N.; Eme, L.; Lombard, J.; Caceres, E.F.; Greening, C.; Baker, B.J.; Ettema, T.J.G. (2019). Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nature Microbiology 4: 1138–1148. https://dx.doi.org/10.1038/s41564-019-0406-9, meer
- Spang, A.; Offre, P. (2019). Towards a systematic understanding of differences between archaeal and bacterial diversity. Environmental Microbiology Reports 11(1): 9-12. https://dx.doi.org/10.1111/1758-2229.12701, meer
- Kellner, S.; Spang, A.; Offre, P.; Szöllosi; Petitjean, C.; Williams, T.A. (2018). Genome size evolution in the Archaea. Emerging Topics in Life Sciences 2(4): ETLS20180021. https://dx.doi.org/10.1042/etls20180021, meer
- Narrowe, A.B.; Spang, A.; Stairs, C.W.; Caceres, E.F.; Baker, B.J.; Miller, C.S.; Ettema, T.J.G. (2018). Complex evolutionary history of translation elongation factor 2 and diphthamide biosynthesis in archaea and parabasalids. Genome Biology and Evolution 10(9): 2380-2393. https://doi.org/10.1093/gbe/evy154, meer
- Raina, J.-B.; Eme, L.; Pollock, F.J.; Spang, A.; Archibald, J.M.; Williams, T.A. (2018). Symbiosis in the microbial world: from ecology to genome evolution. Biology Open 7(2): bio032524. https://doi.org/10.1242/bio.032524, meer
|
Peer reviewed publicaties (2) [show] |
- Albers, S.; Ashmore, J.; Pollard, T.; Spang, A.; Zhou, J. (2022). Origin of eukaryotes: What can be learned from the first successfully isolated Asgard archaeon. Faculty reviews 11. https://dx.doi.org/10.12703/r-01-000005, meer
- Patterson, M.O.; Levy, R.H.; Kulhanek, D.K.; van de Flierdt, T.; Horgan, H.; Dunbar, G.B.; Naish, T.R.; Ash, J.; Pyne, A.; Mandeno, D.; Winberry, P.; Harwood, D.M.; Florindo, F.; Jimenez-Espejo, F.J.; Läufer, A.; Yoo, K.-C.; Seki, O.; Stocchi, P.; Klages, J.P.; Lee, J.I.; Colleoni, F.; Suganuma, Y.; Gasson, E.; Ohneiser, C.; Flores, J.-A.; Try, D.; Kirkman, R.; Koch, D.; the SWAIS 2C Science Team (2022). Sensitivity of the West Antarctic Ice Sheet to +2 °C (SWAIS 2C). Sci. Drill. 30: 101-112. https://dx.doi.org/10.5194/sd-30-101-2022, meer
|
Boekhoofdstukken (2) [show] |
- Dombrowski, N.; Mahendrarajah, T.A.; Gross, S.T.; Eme, L.; Spang, A. (2021). Archaea, in: Green, L.H. et al. Practical Handbook of Microbiology, 4th edition. pp. 229-248. https://doi.org/10.1201/9781003099277-23, meer
- Blohs, M.; Mahnert, A.; Spang, A.; Dombrowski, N.; Krupovica, M.; Klingl, A. (2019). Archaea – An Introduction, in: Schmidt, R.M. Encyclopedia of Microbiology. pp. 243-252. https://dx.doi.org/10.1016/b978-0-12-809633-8.20884-4, meer
|
|