Towards a DNA taxonomy of Caribbean demosponges: a gene tree reconstructed from partial mitochondrial CO1 gene sequences supports previous rDNA phylogenies and provides a new perspective on the systematics of Demospongiae
Erpenbeck, D.; Duran, S.; Rützler, K.; Paul, V.; Hooper, J.N.A.; Wörheide, G. (2007). Towards a DNA taxonomy of Caribbean demosponges: a gene tree reconstructed from partial mitochondrial CO1 gene sequences supports previous rDNA phylogenies and provides a new perspective on the systematics of Demospongiae. J. Mar. Biol. Ass. U.K. 87(6): 1563-1570. https://dx.doi.org/10.1017/S0025315407058195
In: Journal of the Marine Biological Association of the United Kingdom. Cambridge University Press/Marine Biological Association of the United Kingdom: Cambridge. ISSN 0025-3154; e-ISSN 1469-7769, meer
| |
Auteurs | | Top |
- Erpenbeck, D.
- Duran, S., meer
- Rützler, K.
|
- Paul, V.
- Hooper, J.N.A.
- Wörheide, G.
|
|
Abstract |
We present the most comprehensive cytochrome oxidase subunit 1 gene tree published to date for demosponges based on new sequences. The CO1 barcoding fragment is sequenced for 65 species from the Caribbean Sea, and its gene tree reconstructed. Although its deeper nodes are not particularly well-supported, the gene tree provides a variety of information for new phylogenetic patterns, as well as support for previously published 28S rDNA gene trees. In our analysis Halichondriidae cluster with Suberitidae, supporting previous 28S rDNA data. Chelae-bearing Poecilosclerida are monophyletic but most taxa lacking chelae in this dataset cluster more distantly. Haplosclerida are not resolved monophyletically under this fragment. While some species exhibit distinct barcodes, some genera contain species that share CO1 haplotypes. |
|