Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: a data-model comparison study
Menviel, L.; Yu, J.; Joos, F.; Mouchet, A.; Meissner, K.J.; England, M.H. (2017). Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: a data-model comparison study. Paleoceanography 32(1): 2-17. https://dx.doi.org/10.1002/2016PA003024
In: Paleoceanography. American Geophysical Union: Washington, DC. ISSN 0883-8305; e-ISSN 1944-9186, meer
| |
Auteurs | | Top |
- Menviel, L.
- Yu, J.
- Joos, F.
|
- Mouchet, A., meer
- Meissner, K.J.
- England, M.H.
|
|
Abstract |
Atmospheric CO2 was ∼90 ppmv lower at the Last Glacial Maximum (LGM) compared to the late Holocene, but the mechanisms responsible for this change remain elusive. Here we employ a carbon isotope-enabled Earth System Model to investigate the role of ocean circulation in setting the LGM oceanic δ13C distribution, thereby improving our understanding of glacial/interglacial atmospheric CO2 variations. We find that the mean ocean δ13C change can be explained by a 378 ± 88 Gt C(2σ) smaller LGM terrestrial carbon reservoir compared to the Holocene. Critically, in this model, differences in the oceanic δ13C spatial pattern can only be reconciled with a LGM ocean circulation state characterized by a weak (10–15 Sv) and relatively shallow (2000–2500 m) North Atlantic Deep Water cell, reduced Antarctic Bottom Water transport (≤10 Sv globally integrated), and relatively weak (6–8 Sv) and shallow (1000–1500 m) North Pacific Intermediate Water formation. This oceanic circulation state is corroborated by results from the isotope-enabled Bern3D ocean model and further confirmed by high LGM ventilation ages in the deep ocean, particularly in the deep South Atlantic and South Pacific. This suggests a poorly ventilated glacial deep ocean which would have facilitated the sequestration of carbon lost from the terrestrial biosphere and atmosphere. |
|