Copper effect on microalgae: Toxicity and bioremediation strategies
Cavalletti, E.; Romano, G.; Palma Esposito, F.; Barra, L.; Chiaiese, P.; Balzano, S.; Sardo, A. (2022). Copper effect on microalgae: Toxicity and bioremediation strategies. Toxics 10(9): 527. https://dx.doi.org/10.3390/toxics10090527
In: Toxics. MDPI: Basel. e-ISSN 2305-6304, meer
| |
Author keywords |
microalgae; copper pollution; detrimental effects; reactive oxygen species; adsorption; heavy metal removal; bioremediation |
Auteurs | | Top |
- Cavalletti, E.
- Romano, G.
- Palma Esposito, F.
- Barra, L.
|
- Chiaiese, P.
- Balzano, S., meer
- Sardo, A.
|
|
Abstract |
Microalgae are increasingly recognised as suitable microorganisms for heavy metal (HM) removal, since they are able to adsorb them onto their cell wall and, in some cases, compartmentalise them inside organelles. However, at relatively high HM concentrations, they could also show signs of stress, such as organelle impairments and increased activities of antioxidant enzymes. The main aim of this review is to report on the mechanisms adopted by microalgae to counteract detrimental effects of high copper (Cu) concentrations, and on the microalgal potential for Cu bioremediation of aquatic environments. Studying the delicate balance between beneficial and detrimental effects of Cu on microalgae is of particular relevance as this metal is widely present in aquatic environments facing industrial discharges. This metal often induces chloroplast functioning impairment, generation of reactive oxygen species (ROS) and growth rate reduction in a dose-dependent manner. However, microalgae also possess proteins and small molecules with protective role against Cu and, in general, metal stress, which increase their resistance towards these pollutants. Our critical literature analysis reveals that microalgae can be suitable indicators of Cu pollution in aquatic environments, and could also be considered as components of eco-sustainable devices for HM bioremediation in association with other organisms |
|