A state-of-the-art free running system in the Towing Tank for Manoeuvres in Shallow Water
Van Zwijnsvoorde, T.; Verhagen, B.; Delefortrie, G. (2023). A state-of-the-art free running system in the Towing Tank for Manoeuvres in Shallow Water, in: Proceedings of the 7th International Conference on Advanced Model Measurement Technology for The Maritime Industry AMT’23, 24-26 October 2023, Istanbul Turkey. pp. [1-11]
In: (2023). Proceedings of the 7th International Conference on Advanced Model Measurement Technology for The Maritime Industry AMT’23, 24-26 October 2023, Istanbul Turkey. [S.n.]: [s.l.]. , meer
|
Beschikbaar in | Auteurs |
|
Documenttype: Congresbijdrage
|
Trefwoorden |
Harbours and waterways > Manoeuvring behaviour > Autonomous navigation Harbours and waterways > Ship equipment > Hull Harbours and waterways > Ship equipment > Rudder Harbours and waterways > Ship equipment > Screw Physical modelling
|
Auteurs | | Top |
- Van Zwijnsvoorde, T., meer
- Verhagen, B.
- Delefortrie, G., meer
|
|
|
Abstract |
ASHIP – Autonomous Ship Innovation Platform – is a concept developed by Flanders Hydraulics, in cooperation with Ghent University, which provides real life (scale model) and virtual (simulator) test environments for applications in autonomous shipping. At the Towing Tank for Manoeuvres in Shallow Water (Flanders Maritime Laboratory, Ostend, Belgium), a state-of-the-art free running system with real-time feedback has been developed to create a safe test bed for autonomous ships operating in shallow and confined conditions. The system is able to register the position of the ship, communicate with ship controllers and give the controller feedback to rudder and propeller engines. A ROS – Robot Operating System – (ROS2) framework is applied to communicate internally and externally (e.g. with ship controller). The high accuracy demands for the position detection is met through fusing signals from three independent sources (LIDAR, IMU, camera) using an Extended Kalman Filter. As the measurement equipment is located on the ship, with beacons and ARUCO at basin walls, the system extends over the full basin. The paper describes the technical (hardware, software) features of the system with a case study example to show its practical use. |
|