High-order h-adaptive discontinuous Galerkin methods for ocean modelling
Bernard, P.-E.; Chevaugeon, N.; Legat, V.; Deleersnijder, E.; Remacle, J.-F. (2007). High-order h-adaptive discontinuous Galerkin methods for ocean modelling. Ocean Dynamics 57(2): 109-121. dx.doi.org/10.1007/s10236-006-0093-y
In: Ocean Dynamics. Springer-Verlag: Berlin; Heidelberg; New York. ISSN 1616-7341; e-ISSN 1616-7228, meer
| |
Trefwoorden |
Equations Modelling Marien/Kust |
Author keywords |
shallow water equations H-adaptivity; discontinuous Galerkin; a posteriori error estimation |
Auteurs | | Top |
- Bernard, P.-E., meer
- Chevaugeon, N.
- Legat, V., meer
|
- Deleersnijder, E., meer
- Remacle, J.-F., meer
|
|
Abstract |
In this paper, we present an h-adaptive discontinuous Galerkin formulation of the shallow water equations. For a discontinuous Galerkin scheme using polynomials up to order p, the spatial error of discretization of the method can be shown to be of the order of hp+1, where h is the mesh spacing. It can be shown by rigorous error analysis that the discontinuous Galerkin method discretization error can be related to the amplitude of the inter-element jumps. Therefore, we use the information contained in jumps to build error metrics and size field. Results are presented for ocean modelling problems. A first experiment shows that the theoretical convergence rate is reached with the discontinuous Galerkin high-order h-adaptive method applied to the Stommel wind-driven gyre. A second experiment shows the propagation of an anticyclonic eddy in the Gulf of Mexico. |
|