Tidal exchange between a freshwater tidal marsh and an impacted estuary: the Scheldt estuary, Belgium
Van Damme, S.; Dehairs, F.; Tackx, M.; Beauchard, O.; Struyf, E.; Gribsholt, B.; Van Cleemput, O.; Meire, P. (2010). Tidal exchange between a freshwater tidal marsh and an impacted estuary: the Scheldt estuary, Belgium, in: Van Damme, S. Water quality and the estuarine environment: Spatio temporal patterns and opportunities for restoration with emphasis on nitrogen removal = Waterkwaliteit en het estuarien milieu: Spatio-temporele patronen en mogelijkheden tot herstel met speciale aandacht voor stikstofverwijdering. pp. 113-136
In: Van Damme, S. (2010). Water quality and the estuarine environment: Spatio temporal patterns and opportunities for restoration with emphasis on nitrogen removal = Waterkwaliteit en het estuarien milieu: Spatio-temporele patronen en mogelijkheden tot herstel met speciale aandacht voor stikstofverwijdering. PhD Thesis. University Press Antwerp (UPA): Brussel. ISBN 978-90--5487-760-8. 186 pp., meer
| |
Trefwoorden |
Chemical compounds > Silicon compounds > Silica Cycles > Chemical cycles > Geochemical cycle > Biogeochemical cycle > Nutrient cycles Freshwaters Mass balance Particulates > Suspended particulate matter Tidal marshes Water bodies > Coastal waters > Coastal landforms > Coastal inlets > Estuaries Belgium: Schelde Marien/Kust; Brak water; Zoet water |
Author keywords |
Scheldt estuary; mass balance; tidal freshwater marsh; silica; nutrient cycles; suspended particulate matter |
Auteurs | | Top |
- Van Damme, S., meer
- Dehairs, F., meer
- Tackx, M., meer
- Beauchard, O.
|
|
|
Abstract |
Tidal marsh exchange studies are relatively simple tools to investigate the interaction between tidal marshes and estuaries. They have mostly been confined to only a few elements and to saltwater or brackish systems. This study presents mass-balance results of an integrated one year campaign in a freshwater tidal marsh along the Scheldt estuary (Belgium), covering oxygen, nutrients (N, P and Si), carbon, chlorophyll, suspended matter, chloride and sulfate. The role of seepage from the marsh was also investigated. A ranking between the parameters revealed that oxygenation was the strongest effect of the marsh on the estuarine water. Particulate parameters showed overall import. Export of dissolved silica (DSi) was more important than exchange of any other nutrient form. Export of DSi and import of total dissolved nitrogen (DIN) nevertheless contributed about equally to the increase of the Si:N ratio in the seepage water. The marsh had a counteracting effect on the long term trend of nutrient ratios in the estuary. |
|