Overslaan en naar de inhoud gaan
Publicaties | Personen | Instituten | Projecten
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Resolving the effect of climate change on fish populations
Rijnsdorp, A.D.; Peck, M.A.; Engelhard, G.H.; Möllmann, C.; Pinnegar, J.K. (2009). Resolving the effect of climate change on fish populations. ICES J. Mar. Sci./J. Cons. int. Explor. Mer 66(7): 1570-1583. http://dx.doi.org/10.1093/icesjms/fsp056
In: ICES Journal of Marine Science. Academic Press: London. ISSN 1054-3139; e-ISSN 1095-9289, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoorden
    Biology > Physiology > Ecophysiology
    Climatic changes
    Ecosystems
    Fauna > Aquatic organisms > Aquatic animals > Fish
    Population dynamics
    Marien/Kust
Author keywords
    climate change; eco-physiology; ecosystem; fish; population dynamics

Auteurs  Top 
  • Rijnsdorp, A.D., meer
  • Peck, M.A.
  • Engelhard, G.H.
  • Möllmann, C.
  • Pinnegar, J.K.

Abstract
    This paper develops a framework for the study of climate on fish populations based on first principles of physiology, ecology, and available observations. Environmental variables and oceanographic features that are relevant to fish and that are likely to be affected by climate change are reviewed. Working hypotheses are derived from the differences in the expected response of different species groups. A review of published data on Northeast Atlantic fish species representing different biogeographic affinities, habitats, and body size lends support to the hypothesis that global warming results in a shift in abundance and distribution (in patterns of occurrence with latitude and depth) of fish species. Pelagic species exhibit clear changes in seasonal migration patterns related to climate-induced changes in zooplankton productivity. Lusitanian species have increased in recent decades (sprat, anchovy, and horse mackerel), especially at the northern limit of their distribution areas, while Boreal species decreased at the southern limit of their distribution range (cod and plaice), but increased at the northern limit (cod). Although the underlying mechanisms remain uncertain, available evidence suggests climate-related changes in recruitment success to be the key process, stemming from either higher production or survival in the pelagic egg or larval stage, or owing to changes in the quality/quantity of nursery habitats.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs