Overslaan en naar de inhoud gaan
Publicaties | Personen | Instituten | Projecten
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

First glimpse into Lower Jurassic deep-sea biodiversity: in situ diversification and resilience against extinction
Thuy, B.; Kiel, S.; Dulai, A.; Gale, A.S.; Kroh, A.; Lord, A.R.; Numberger-Thuy, L.D.; Stöhr, S.; Wisshak, M. (2014). First glimpse into Lower Jurassic deep-sea biodiversity: in situ diversification and resilience against extinction. Proc. - Royal Soc., Biol. Sci. 281(1786): 6 pp. http://dx.doi.org/10.1098/rspb.2013.2624
In: Proceedings of the Royal Society of London. Series B. The Royal Society: London. ISSN 0962-8452; e-ISSN 1471-2954, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoord
    Marien/Kust
Author keywords
    evolution of deep-sea biota, onshore-offshore patterns, in situ diversification, resilience against extinction

Auteurs  Top 
  • Thuy, B.
  • Kiel, S.
  • Dulai, A.
  • Gale, A.S.
  • Kroh, A., meer
  • Lord, A.R.
  • Numberger-Thuy, L.D.
  • Stöhr, S., meer
  • Wisshak, M.

Abstract
    Owing to the assumed lack of deep-sea macrofossils older than the Late Cretaceous, very little is known about the geological history of deep-sea communities, and most inference-based hypotheses argue for repeated recolonizations of the deep sea from shelf habitats following major palaeoceanographic perturbations. We present a fossil deep-sea assemblage of echinoderms, gastropods, brachiopods and ostracods, from the Early Jurassic of the Glasenbach Gorge, Austria, which includes the oldest known representatives of a number of extant deep-sea groups, and thus implies that in situ diversification, in contrast to immigration from shelf habitats, played a much greater role in shaping modern deep-sea biodiversity than previously thought. A comparison with coeval shelf assemblages reveals that, at least in some of the analysed groups, significantly more extant families/superfamilies have endured in the deep sea since the Early Jurassic than in the shelf seas, which suggests that deep-sea biota are more resilient against extinction than shallow-water ones. In addition, a number of extant deep-sea families/superfamilies found in the Glasenbach assemblage lack post-Jurassic shelf occurrences, implying that if there was a complete extinction of the deep-sea fauna followed by replacement from the shelf, it must have happened before the Late Jurassic.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs