Overslaan en naar de inhoud gaan
Publicaties | Personen | Instituten | Projecten
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Loss of nitrogen via anaerobic ammonium oxidation (anammox) in the California Current system during the late Quaternary
van Kemenade, Z.R.; Erdem, Z.; Hopmans, E.C.; Sinninghe Damsté, J.S; Rush, D. (2024). Loss of nitrogen via anaerobic ammonium oxidation (anammox) in the California Current system during the late Quaternary. Biogeosciences 21(6): 1517-1532. https://dx.doi.org/10.5194/bg-21-1517-2024
In: Gattuso, J.P.; Kesselmeier, J. (Ed.) Biogeosciences. Copernicus Publications: Göttingen. ISSN 1726-4170; e-ISSN 1726-4189, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Auteurs  Top 
  • van Kemenade, Z.R., meer
  • Erdem, Z., meer
  • Hopmans, E.C., meer
  • Sinninghe Damsté, J.S, meer
  • Rush, D., meer

Abstract
    The California Current system (CCS) hosts one of the largest oxygen minimum zones (OMZs) in the world: the eastern North Pacific (ENP) OMZ, which is dissociated into subtropical and tropical regions (i.e. the ESTNP and ETNP). In the modern ENP OMZ, bioavailable nitrogen (N) is lost via denitrification and anaerobic ammonium oxidation (anammox). Even so, paleo-reconstructions of N loss have focused solely on denitrification. Fluctuations in bulk sedimentary δ15N over glacial–interglacial cycles have been interpreted to reflect variations in denitrification rates in response to ETNP OMZ intensity changes. This δ15N signal is thought to be transported northwards to the ESTNP OMZ. Here, we present the first CCS sedimentary record of ladderane lipids, biomarkers for anammox, located within the ESTNP OMZ (32° N, 118° W). Over the last two glacial terminations (∼ 160 kyr cal BP), ladderane concentrations were analysed in combination with the index of ladderanes with five cyclobutane moieties (NL5), short-chain (SC) ladderane degradation products, and productivity proxies. This shows that (1) ladderanes were derived from anammox bacteria living within the ESTNP OMZ water column; (2) ladderanes were continuously present, with relatively high concentrations during both glacial and interglacial periods, showcasing that the ESTNP OMZ must have retained an anoxic core in which N loss occurred; and (3) anammox abundance appears to have been driven by both organic matter (OM) remineralization and advection changes, which regulated nutrient and oxygen levels. Our study shows that anammox was an important feature in the CCS, and it provides a more holistic picture of N-loss dynamics and the development of the ESTNP OMZ over glacial–interglacial cycles. Lastly, ladderanes and their SC products were also detected in 160–500 kyr cal BP sediments (15.7–37.5 m b.s.f., metres below sea floor; analysed at a low temporal resolution), highlighting their potential as anammox biomarkers in relatively deeper buried sediments for future studies.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs